Answer:
Less than 1 m
Explanation:
When objects are getting closer to each other there is a slight change in the wavelength that is being transmitted by either objects. This is known as the blue shift of waves. Here, the wavelength reduces.
In the opposite case the when objects are getting farther from each other there is a slight change in the wavelength that is being transmitted by either objects. This is known as the red shift. Here, the wavelength increases.
In this case the spaceship is getting close to Earth hence the wavelength will be lower than 1 m.
Answer:
1. Elastic collision
2. Inelastic collision
Explanation:
Elastic collision: collision is said to be elastic if total kinetic energy is not conserved and if there is a rebound after collision
the collision is described by the equation bellow

Inelastic collision: this type of collision occurs when the total kinetic energy of a body is conserved or when the bodies sticks together and move with a common velocity
the collision is described by the equation bellow

Answer:
Option C) 2,090 J/(mol K)
Explanation:
Data:
Volume in the beaker = 429 ml
temperature = 20° C
Density = 789 kg/m³
Equilibrium reading = 429
volume change = 29 ml
= 0.029 L
Energy change = mcΔT
U + PΔV
GIVEN:
60 beats per minute
21 beats per minute
find x= how fast would an astronaut be flying away
1 x
----- * ------ = (60x = 21) -------> 60x = 21 ------------> x= 0.35
60 21 ------- -----
60 60
The answer is 0.35 seconds which refers to how fast would an astronaut be flying away from the earth if he has a heart rate of 21 beats/min.