Answer:
<em>The velocity with which the student goes down the bottom of glide is 12.48m/s.</em>
Explanation:
The Non conservative force is defined as a force which do not store energy or get he energy dissipate the energy from the system as the system progress with the motion.
Given are
<em> mass of the student 73 kg</em>
<em> height of water glide 11.8 m</em>
<em> work done as -5.5*10³ J</em>
Have to find speed at which the student goes down the glide.
According to<em> Law of Conservation of energy</em>,
K.E =P.E+Work Done
mv²/2=mgh +W
Rearranging the above eqn for v
v = √2(gh+W/m)
Substituting values,
V = 12.48 m/s.
<em>The velocity with which the student goes down the bottom of glide is 12.48m/s.</em>
Answer:
The work done by the drag force is given by 29.96 J
Explanation:
Given :
Thrust force
N
Displacement
m
Mass of rocket
Kg
From work energy theorem,


Where
thrust work
gravitational work

After cutoff kinetic energy is converted into potential energy,

Put value of KE

Work done by drag force is given by,

J
Therefore, the work done by the drag force is given by 29.96 J
Hey there!
<span>
An object's velocity can be described by its speed and acceleration.
This statement is true
Hope this helps
Have a great day (:
</span>
Answer:
0.488 m
Explanation:
If θ be the angle ladder makes with the plane
cos θ = 1.2 / 5
Tan θ = 4.04
Let the height a person of weight 600 N can climb be h from the ground .
Distance from the base point where ladder touches the floor = h / tanθ
= h / 4.04
Total reaction force = total downward force
R = 200 + 600
800 N
Frictional force = μ R
= .2 x 800
= 160 N
Taking moment of force about the point on the ladder where it touches the floor and balancing them
200 x 1.2 x .5 + 600 x h / tanθ = μ R x 1.2 / tanθ ( reaction at the top point of ladder where it touches the wall is R₁ and
R₁ =μ R )
= 200 x 1.2 x .5 + 600 x h / tanθ = 160 x 1.2 / tanθ
120 - 600 h / 4.04 = 47.52
120 - 47.52 = 600 h / 4.04
72.48= 148.51 h
h = 0.488 m
=
Answer:
As indicated by Newton's law of attraction each article or body in the universe draws in every single item towards one another and that power of fascination is straightforwardly relative to the result of their masses and contrarily corresponding to the square of the distance between them.
The power of gravity between two articles will diminish as the distance between them increments. The two most significant elements influencing the gravitational power between two items are their mass and the distance between their focuses. As mass increments, so does the power of gravity, however an increment in distance mirrors a reverse proportionality, which makes that power decline dramatically.
At that point by Newton's All inclusive Law of Attractive energy;
F=GMm/R^2
Mm= result of the majority
R=Distance Between the two masses by focus.
On the off chance that R is multiplied, new force=GMm/(2R)^2
=GMm/4R^2
Unique Power/New Force=4/1
F/4=New Power