1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nataliya [291]
2 years ago
11

The following data were collected during a short race between two friends. Velocity (m/s) 0 0.5 1 1.5 2 2 4 6 2 0 Time (s) 0 2 4

6 8 10 12 14 16 18 a) Describe the different sections of the graph. b) Determine the acceleration over the first eight seconds. c) Determine the maximum acceleration. d) Using the graph calculate the displacement: i) over the first eight seconds ii) the total race. e) Find the maximum velocity reached by the runner.
Physics
1 answer:
scoundrel [369]2 years ago
3 0

The characteristics of the kinematics allow to find the results for the questions about the movement of the body are:

a)  we have four sections;

  • 0 to 8 s The body is accelerating.
  • 8 to 10 s The body goes at a constant speed, the acceleration is zero.
  • 10 to 14 Body accelerating.
  • 14 to 18 Body slowing down.

b)  The acceleration is the first 8 s is:  a = 0.25 m / s²

c) The maximum acceleration is:    a = 1 m / s²

d) The displacement   is:  i) d₁ =  8m,     ii)  d_{total}= 16 m

e) maximum speed  is:      v = 6 m / s

Kinematics studies the movement of bodies by finding relationships between the position, speed and acceleration of bodies.

        v = v₀ + a t

        y = v₀ t + ½ a t²

where v and v₀ is the current and initial velocity, respectively, a is the acceleration and t is time.

In many circumstances graphs are made for their analysis, in a graph of speed versus time when we have a horizontal line the speed is constant, the acceleration is zero and in the case of a slope there is an acceleration, we have two cases:

  • Positive slope the body is accelerating and the speed is increasing.
  • Negative slope the body is stopping, the speed decreases.

Let's answer the different questions about the system.

a) in the attached we have a graph of the velocity versus time, each section corresponds to a change in the slope of the graph, we have four sections;

  • 0 to 8 s The body is accelerating.
  • 8 to 10 s The body goes at a constant speed, the acceleration is zero.
  • 10 to 14 Body accelerating.
  • 14 to 18 Body slowing down.

b) The acceleration is the first 8 s

          v = v₀ + a t

          a = \frac{v-v_o}{\Delta t}  

          a = \frac{2-0}{8-0}  

          a = 0.25 m / s²

c) The maximum acceleration is when the slope is maximum.

          a = \frac{6-2}{ 14-10}  

          a = 1 m / s²

Therefore the acceleration is maximum in the section between 10 and 14 s

d) The total displacement is the sum of the displacements of each section.

         d_{total } = d_1 +d_2 + d_3 +d_4  

We look for every displacement.

       d₁ = v₀ + ½ a₁ Δt²

       d₁ = 0 + ½ 0.25 8²

       d₁ = 8 m

In the second section the velocity is constant

         d₂ = v₂ Δt₂

         d₂ = 2 (10-8)

         d₂ = 4 m

The third section.

    d₃ = v₀ + ½ a t²

    d₃ = 2 + ½ 1 (14-10) ²

    d₃ = 10 m

The distance of the fourth section.

       

we look for acceleration

          a₄ = \frac{v-v_o}{\Delta t}  

          a₄ = \frac{0-6}{18-14}  

          a₄ = -1.5 m / s²

     

          d₄ = 6 + ½ (-1.5) (1814) ²

          d₄ = -6 m

The total displacement is;

          d_{total} = 8 + 4 + 10 -6

          d_{total} = 16 m

e) The maximum speed is the highest point in the graph of speed versus time that in the attachment we can see corresponds to

          v = 6 m / s

In conclusion using the characteristics of kinematics we can find the results for the questions about the motion of bodies are:

  a)  we have four sections;

  • 0 to 8 s The body is accelerating.
  • 8 to 10 s The body goes at a constant speed, the acceleration is zero.
  • 10 to 14 Body accelerating.
  • 14 to 18 Body slowing down.

b)  The acceleration is the first 8 s is:  a = 0.25 m / s²

c) The maximum acceleration is:    a = 1 m / s²

d) The displacement   is:  i) d₁ =  8m,     ii)  d_{total}= 16 m

e) maximum speed  is:      v = 6 m / s

Learn more about kinematics here: brainly.com/question/24783036

You might be interested in
Prisms separate <br> light, such as that from the Sun, by wavelength
SVETLANKA909090 [29]
Sorry I'm so late, but I just took this test and the answer is white (for people who didn't study well ;) )
6 0
3 years ago
a mass of 0.75 kg is attached to a spring and placed on a horizontal surface. the spring has a spring constant of 180 N/m, and t
Artemon [7]

Answer:

6.57 m/s

Explanation:

First use Hook's Law to determine the F the compressed spring acts on the mass. Hook's Law F=kx; F=force, k=stiffnes of spring (or spring constant), x=displacement

F=kx; F=180(.3) = 54 N

Next from Newton's second law find the acceleration of the mass.

Newton's .2nd law F=ma; a=F/m ; a=54/.75 = 72m/s²

Now use the kinematic equation for velocity (or speed)

v₂²= v₀² + 2a(x₂-x₀); v₂=final velocity; v₀=initial velocity; a=acceleration; x₂=final displacement; x₀=initial displacment.

v₀=0, since the mass is at rest before we release it

a=72 m/s² (from above)

x₀=0 as the start position already compressed

x₂=0.3m (this puts the spring back to it's natural length)

v₂²= 0 + 2(72)(0.3) = 43.2 m²/s²

v₂=\sqrt{43.2)\\ = 6.57 m/s

5 0
3 years ago
If a short-wave radio station broadcasts on a frequency of 9.065 megahertz (MHz), what is the wavelength of
Yakvenalex [24]

Answer:

If the radio wave is on an FM station, these are in Megahertz. A megahertz is one ... Typical radio wave frequencies are about 88~108 MHz .

Explanation:

To calculate the wavelength of a radio wave, you will be using the equation: Speed of a wave = wavelength X frequency.

Since radio waves are electromagnetic waves and travel at 2.997 X

10

8

meters/second, then you will need to know the frequency of the radio wave.

If the radio wave is on an FM station, these are in Megahertz. A megahertz is one million hertz. If the radio wave is from an AM radio station, these are in kilohertz (there are one thousand hertz in a kilohertz). Hertz are waves/second. Hertz is usually the label for the frequency of electromagnetic waves.

To conclude, to determine the wavelength of a radio wave, you take the speed and divide it by the frequency.

Typical radio wave frequencies are about

88

~

108

MHz

. The wavelength is thus typically about

3.41

×

10

9

~

2.78

×

10

9

nm

.

7 0
2 years ago
Scientists have proven that genes play no role in self-esteem. Please select the best answer from the choices provided. T F
IRINA_888 [86]
The answer is False give thanks for the answer m8 and happy Halloween
6 0
3 years ago
Read 2 more answers
If the distance between two masses is tripled, the gravitational force between changes by a factor of
maw [93]

A. 1/9

Explanation:

The gravitational force between two objects is given by

F=G\frac{m_1 m_2}{r^2}

where

G is the gravitational constant

m1 and m2 are the two masses

r is the distance between the two masses

From the formula, we see that the magnitude of the force is inversely proportional to the square of the distance: therefore, if the distance is tripled (increased by a factor 3), the magnitude of the force changes by a factor

\frac{1}{r^2}=\frac{1}{3^2}=\frac{1}{9}

6 0
3 years ago
Read 2 more answers
Other questions:
  • meg runs a 10-km race in 45 minutes (0.75 hours). what was her speed in kilometers per hour ? a. 7.5 km/hr b. 4.5 km/hr c. 13 km
    12·1 answer
  • Which of the following is most responsible for El Niño?
    8·2 answers
  • List and define three types of intermolecular forces and identify which types of molecules each forces affects.
    8·1 answer
  • A 2-kW electric heater takes 15 min to boil a quantity of water. If this is done once a day and power costs 10 cents per kWh, wh
    6·1 answer
  • What are the variables in Gay-Lussac's law? pressure and volume pressure, temperature, and volume pressure and temperature volum
    7·2 answers
  • A gas fills the right portion of a horizontal cylinder whose radius is 5.33 cm. The initial pressure of the gas is 2.29 x 105 Pa
    6·1 answer
  • Shoo the fly flaps its wings back and forth 140 times each second. The frequency of the wing flapping is ____ Hz.
    10·1 answer
  • Which color is in the middle of the light spectrum?
    10·1 answer
  • Isaac Newton discovered the three laws of motion. Which example best illustrates Newton's third law of motion, which describes a
    11·1 answer
  • If you wanted to see a star behind an interstellar dust cloud, what "colour" of light should you look for?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!