Answer:
(a): a = 0.4m/s²
(b): α = 8 radians/s²
Explanation:
First we propose an equation to determine the linear acceleration and an equation to determine the space traveled in the ramp (5m):
a= (Vf-Vi)/t = (2m/s)/t
a: linear acceleration.
Vf: speed at the end of the ramp.
Vi: speed at the beginning of the ramp (zero).
d= (1/2)×a×t² = 5m
d: distance of the ramp (5m).
We replace the first equation in the second to determine the travel time on the ramp:
d = 5m = (1/2)×( (2m/s)/t)×t² = (1m/s)×t ⇒ t = 5s
And the linear acceleration will be:
a = (2m/s)/5s = 0.4m/s²
Now we determine the perimeter of the cylinder to know the linear distance traveled on the ramp in a revolution:
perimeter = π×diameter = π×0.1m = 0.3142m
To determine the angular acceleration we divide the linear acceleration by the radius of the cylinder:
α = (0.4m/s²)/(0.05m) = 8 radians/s²
α: angular aceleration.
Answer: 8 meters per second
Explanation: If you add 60 to 20 you get 80 meters and since he ran those 80 meters in 10 seconds you divide 80 by ten and get 8 and then you get 8m/s
Teddyber continue to move forward because Newton law 1. moving object continue to move until something external make it to stop. no seat belt on teddy ber so only dashboard can make her stop. same if people in car and no seatbelt.
<span>A.frictional effects dissipate energy.</span>
Answer:

Explanation:
Impulse-Momentum relation:


We solve the equations in order to find the braking force:
