Answer:
there is some difference
Explanation:
hydrogen ion --
symbol-H
Charge- 1+ or 1-
it is atom
hydroxide ion --
symbol- OH
charge-. -1
contains.- one oxygen atom and one hydrogen atom.
they are bonded.
it is a molecule
Answer:
It is traveling at 170 miles per hour.
Explanation:
divide 340 by 2 because right now it's at 340 miles per two hours.
You get 170 miles per hour.
Answer:
Explanation:
<u>1. Word equation:</u>
- <em>mercury(II) oxide → mercury + oxygen </em>
<u>2. Balanced molecular equation:</u>
<u>3. Mole ratio</u>
Write the ratio of the coefficients of the substances that are object of the problem:

<u>4. Calculate the number of moles of O₂(g)</u>
Use the equation for ideal gases:

<u>5. Calculate the number of moles of HgO</u>

<u>6. Convert to mass</u>
- mass = # moles × molar mass
- molar mass of HgO: 216.591g/mol
- mass = 0.315mol × 216.591g/mol = 68.3g
The wavelength of the orange line is 610 nm, the frequency of this emission is 4.92 x 10¹⁴ Hz and the energy of the emitted photon corresponding to this <em>orange line</em> is 3.26 x 10⁻¹⁹ J.
<em>"Your question is not complete, it seems to be missing the diagram of the emission spectrum"</em>
the diagram of the emission spectrum has been added.
<em>From the given</em><em> chart;</em>
The wavelength of the atomic emission corresponding to the orange line is 610 nm = 610 x 10⁻⁹ m
The frequency of this emission is calculated as follows;
c = fλ
where;
- <em>c is the speed of light = 3 x 10⁸ m/s</em>
- <em>f is the frequency of the wave</em>
- <em>λ is the wavelength</em>

The energy of the emitted photon corresponding to the orange line is calculated as follows;
E = hf
where;
- <em>h is Planck's constant = 6.626 x 10⁻³⁴ Js</em>
<em />
E = (6.626 x 10⁻³⁴) x (4.92 x 10¹⁴)
E = 3.26 x 10⁻¹⁹ J.
Thus, the wavelength of the orange line is 610 nm, the frequency of this emission is 4.92 x 10¹⁴ Hz and the energy of the emitted photon corresponding to this <em>orange line</em> is 3.26 x 10⁻¹⁹ J.
Learn more here:brainly.com/question/15962928
D. More collisions occur and the time required for the reaction decreases
This happens because according to collision theory, when energy (in this case, thermal energy) is applied to particles, they move/vibrate more quickly.