Given that,
Mass of trackler, m₁ = 100 kg
Speed of trackler, u₁ = 2.6 m/s
Mass of halfback, m₂ = 92 kg
Speed of halfback, u₂ = -5 m/s (direction is opposite)
To find,
Mutual speed immediately after the collision.
Solution,
The momentum of the system remains conserved in this case. Let v is the mutual speed after the collision. Using conservation of momentum as :

So, the mutual speed immediately after the collision is 1.04 m/s but in opposite direction.
Answer:
w = 1.976 rpm
Explanation:
For simulate the gravity we will use the centripetal aceleration
, so:

where w is the angular aceleration and r the radius.
We know by the question that:
r = 60.5m
= 2.6m/s2
So, Replacing the data, and solving for w, we get:

W = 0.207 rad/s
Finally we change the angular velocity from rad/s to rpm as:
W = 0.207 rad/s = 0.207*60/(2
)= 1.976 rpm
The magnitude of your displacement can be equal to the distance you covered, or it can be less than the distance you covered. But it can never be greater than the distance you covered.
This is because displacement is a straight line, whereas distance can be a straight line, a squiggly line, a zig-zag line, a line with loops in it, a line with a bunch of back-and-forths in it, or any other kind of line.
The straight line is always the shortest path between two points.
Answer:
Work done.
Explanation:
The skater who lifts has to overcome the partner's weight. When lifted up by 1 meter, her potential energy increases by (mass)x(gravitational acceleration)x(1meter), which is the amount of work done.
(This all assumes lifting vertically and no other forces being part of the picture)