Answer: 1.289 m
Explanation:
The path the cobra's venom follows since it is spitted until it hits the ground, is described by a parabola. Hence, the equations for parabolic motion (which has two components) can be applied to solve this problem:
<u>x-component:
</u>
(1)
Where:
is the horizontal distance traveled by the venom
is the venom's initial speed
is the angle
is the time since the venom is spitted until it hits the ground
<u>y-component:
</u>
(2)
Where:
is the initial height of the venom
is the final height of the venom (when it finally hits the ground)
is the acceleration due gravity
Let's begin with (2) to find the time it takes the complete path:
(3)
Rewritting (3):
(4)
This is a quadratic equation (also called equation of the second degree) of the form
, which can be solved with the following formula:
(5)
Where:
Substituting the known values:
(6)
Solving (6) we find the positive result is:
(7)
Substituting (7) in (1):
(8)
We finally find the horizontal distance traveled by the venom:
Answer:
Isotopes can both be the same element but have a different number of electrons
Explanation: not sure if more was supposed to be there, but i tried
I uploaded the answer to a file hosting. Here's link:
tinyurl.com/wpazsebu
For the given question above, I think there is an associated choice of answer for it. However, the answer for this is London Dispersion Forces. <span>Dipole-dipole forces and hydrogen bonding are much stronger, leading to higher melting and boiling points.</span>
Answer:
Explanation:
There is no set way to do this. All you have to do is define left and right. Left will be minus and right will be the opposite --- plus.
That is completely arbitrary. It could be the other way around. It does not matter.
Left is minus so: - 600 N is the force going left.
Right plus so: + 500 N
Now just add.
Net Force = +500 - 600
Net Force = - 100 N
So the Net Force is - 100 N going to the left.