I believe the answer is H for when you bounce it, it has stress when it hits the floor and then goes up giving it kinetic
Acceleration can be defined as the rate of change in the velocity of an object. Option C is correct.
<h3>What is
Acceleration?</h3>
- It is defined as the rate of change in velocity.
- It can also be defined as the rate of change in position in a particular direction.

Where,
- acceleration
- change in velocity
- time
Therefore, acceleration can be defined as the rate of change in the velocity of an object.
Learn more about Velocity:
brainly.com/question/2239252
Rolling friction is considerably less than sliding friction as there is no work done against the body that is rolling by the force of friction. For a body to start rolling a small amount of friction is required at the point where it rests on the other surface, else it would slide instead of roll.
First establish the summation of the forces acting int the
ladder
Forces in the x direction Fx = 0 = force of friction (Ff) –
normal force in the wall(n2)
Forces in the y direction Fy =0 = normal force in floor (n1)
– (12*9.81) –( 60*9.81)
So n1 = 706.32 N
Since Ff = un1 = 0.28*706.32 = 197,77 N = n2
Torque balance along the bottom of the ladder = 0 = n2(4 m) –
(12*9.81*2.5 m) – (60*9.81 *x m)
X = 0.844 m
5/ 3 = h/ 0.844
H = 1.4 m can the 60 kg person climb berfore the ladder will
slip