In collision that are categorized as elastic, the total kinetic energy of the system is preserved such that,
KE1 = KE2
The kinetic energy of the system before the collision is solved below.
KE1 = (0.5)(25)(20)² + (0.5)(10g)(15)²
KE1 = 6125 g cm²/s²
This value should also be equal to KE2, which can be calculated using the conditions after the collision.
KE2 = 6125 g cm²/s² = (0.5)(10)(22.1)² + (0.5)(25)(x²)
The value of x from the equation is 17.16 cm/s.
Hence, the answer is 17.16 cm/s.
Answer:
Force, F = 77 N
Explanation:
A child in a wagon seem to fall backward when you give the wagon a sharp pull forward. It is due to Newton's third law of motion. The forward pull on wagon is called action force and the backward force is called reaction force. These two forces are equal in magnitude but they acts in opposite direction.
We need to calculate the force is needed to accelerate a sled. It can be calculated using the formula as :
F = m × a
Where
m = mass = 55 kg
a = acceleration = 1.4 m/s²

F = 77 N
So, the force needed to accelerate a sled is 77 N. Hence, this is the required solution.
Answer:
in the direction of the applied force
Explanation:
Answer:
Approximately
(assuming that the melting point of ice is
.)
Explanation:
Convert the unit of mass to kilograms, so as to match the unit of the specific heat capacity of ice and of water.

The energy required comes in three parts:
- Energy required to raise the temperature of that
of ice from
to
(the melting point of ice.) - Energy required to turn
of ice into water while temperature stayed constant. - Energy required to raise the temperature of that newly-formed
of water from
to
.
The following equation gives the amount of energy
required to raise the temperature of a sample of mass
and specific heat capacity
by
:
,
where
is the specific heat capacity of the material,
is the mass of the sample, and
is the change in the temperature of this sample.
For the first part of energy input,
whereas
. Calculate the change in the temperature:
.
Calculate the energy required to achieve that temperature change:
.
Similarly, for the third part of energy input,
whereas
. Calculate the change in the temperature:
.
Calculate the energy required to achieve that temperature change:
.
The second part of energy input requires a different equation. The energy
required to melt a sample of mass
and latent heat of fusion
is:
.
Apply this equation to find the size of the second part of energy input:
.
Find the sum of these three parts of energy:
.