Answer:
0.752 m/s
Explanation:
m1 = 3.00kg
u1 = 5.05m/s
m2 = 2.76kg
u2 = -3.66m/s
According to the law of conservation of momentum,
m1u1 + m2u2 = (m1+m2)v
3(5.05) + 2.76(-3.66) = (5.05+2.76)v
15.15 - 9.2736 = 7.81v
5.8764 = 7.81v
v = 5.8764/7.81
v = 0.752m/s
Answer:
B
Explanation:
Water level remains unchanged
The first thing to realize is that the buoyancy force is the same as, or equal to the weight of the wood, this same force is also the same as or equal to the weight of the water displaced by the wood. In the two cases, the weight of the wood will be unaffected nonetheless, and thus the water level will remain the same.
Therefore, the answer is B, the water level remains unchanged.
<u>Answer:
</u>
Cat has 2.02 seconds to right itself.
<u>Explanation:
</u>
Initial height of cat from ground = 20 meter.
We have equation of motion ,
, s is the displacement, u is the initial velocity, a is the acceleration and t is the time.
In this the velocity of cat in vertical direction = 0 m/s, acceleration = acceleration due to gravity = 9.8
, we need to calculate time when s = 20 meter.
Substituting
So, cat has 2.02 seconds to right itself.
Given Information:
Mass of sock = 0.23 kg
Stretched length of sock = x = 2.54 cm = 0.0254 m
Required Information:
Spring constant = k = ?
Answer:
Spring constant = k = 88.82 N/m
Explanation:
We know from the Hook's law that
F = kx
Where k is spring constant, F is the applied force and x is length of sock being stretched.
k = F/x
Where F is given by
F = mg
F = 0.23*9.81
F = 2.256 N
So the spring constant is
k = 2.256/0.0254
k = 88.82 N/m
Therefore, the spring constant of the sock is 88.82 N/m
kinematic equation
v=u+at
v-u=at
v-u = 1x5
the driver will have increased speed by 5 m/s. actual speeds unknown