Answer:
58.27 N
Explanation:
the data we have is:
mass: 
coefficient of friction: 
and we also know the acceleration of gravity is 
We need to do an analysis of horizontal and vertical forces acting on the object:
-------
Vertically the forces acting on the object:
- Normal force
(acting up from the object)
- weight:
(acting down from)
so the sum of forces in the vertical axis "y" are:

from Newton's second Law we know that
, so:

and since the object is not accelerating in the vertical direction (the movement is only horizontal)
, and:

-----------
now let's analyze the horizontal forces
- frictional force:
and since
--> 
- force to move the object:

and the two forces just mentioned must be opposite, thus the sum of forces in the "x" axis is:

and we are told that the crate moves at a steady speed, thus there is no acceleration: 
and we get:

substituting known values:

The power is 833.3 W
Explanation:
First of all, we need to calculate the work done in lifting the barbell, which is equal to the change in gravitational potential energy of the barbell:

where
mg = 1250 N is the weight of the barbell
h = 2 m is the change in height
Substituting,

Now we can calculate the power, which is equal to the work done per unit time:

where
W = 2500 J is the work done
t = 3 s is the time taken
Substituting,

Learn more about power:
brainly.com/question/7956557
#LearnwithBrainly
Answer:
5 m/s
Explanation:
Here we can see there is no external force acted on a two masses when we consider the motion. If there is no external forces then momentum is conserved.
Initial momentum = Final momentum
0.5 × 10 = 1 × V
V = 5 m/s
Answer: 0.72 grams
Explanation: Mass can be extracted from the formula of density. D=M/V where D is density and V is volume. Therefore:
18 g/cm^3 = M(25 cm^3) --> Divide by 18g/cm^3 by 25 cm^3 to isolate mass. --> <u>0.72 =M </u> --> Now, to find out which unit you need to use for mass, just look at the density. You can see it is in g/cm^3, and cm^3 was already used for the volume. Thus, gram units are left, so that will be the unit needed, making the final answer 0.72 grams. Hope this helps :)
Answer: 1477.78 N
Explanation:
Let's assume that the cross sectional area of the smaller piston be A1
let's also assume the cross sectional area of the larger piston be A2
We assume the force applied to the smaller piston be F1
We also assume the force applied to the larger piston be F2
we then use the formula
F1/A1 = F2/A2
From our question,
The radius of the smaller piston is 5 cm = 0.05 m
The radius of the larger piston is 15 cm = 0.15 m
The force of the larger piston is 13300 N
The force of the smaller piston is unknown = F
A1 = πr² = 3.142 * 0.05² = 0.007855 m²
A2 = πr² = 3.142 * 0.15² = 0.070695 m²
F1/0.007855 = 13300/0.070695
F1 = (13300 * 0.007855) / 0.070695
F1 = 104.4715 / 0.070695
F1 = 1477.78 N
Thus, the force the compressed air must exert is 1477.78 N