Answer:
Mass of water produced is 22.86 g.
Explanation:
Given data:
Mass of hydrogen = 2.56 g
Mass of oxygen = 20.32 g
Mass of water = ?
Solution:
Chemical equation:
2H₂ + O₂ → 2H₂O
Number of moles of oxygen:
Number of moles = mass/ molar mass
Number of moles = 20.32 g/ 32 g/mol
Number of moles = 0.635 mol
Number of moles of hydrogen:
Number of moles = mass/ molar mass
Number of moles = 2.56 g/ 2 g/mol
Number of moles = 1.28 mol
Now we will compare the moles of water with oxygen and hydrogen.
O₂ : H₂O
1 : 2
0.635 ; 2×0.635 = 1.27
H₂ : H₂O
2 : 2
1.28 : 1.28
The number of moles of water produced by oxygen are less thus it will be limiting reactant.
Mass of water produced:
Mass = number of moles × molar mass
Mass = 1.27 × 18 g/mol
Mass = 22.86 g
Answer:
Elemental gold to have a Face-centered cubic structure.
Explanation:
From the information given:
Radius of gold = 144 pm
Its density = 19.32 g/cm³
Assuming the structure is a face-centered cubic structure, we can determine the density of the crystal by using the following:


a = 407 pm
In a unit cell, Volume (V) = a³
V = (407 pm)³
V = 6.74 × 10⁷ pm³
V = 6.74 × 10⁻²³ cm³
Recall that:
Net no. of an atom in an FCC unit cell = 4
Thus;


density d = 19.41 g/cm³
Similarly; For a body-centered cubic structure

where;
r = 144


a = 332.56 pm
In a unit cell, Volume V = a³
V = (332.56 pm)³
V = 3.68 × 10⁷ pm³
V 3.68 × 10⁻²³ cm³
Recall that:
Net no. of atoms in BCC cell = 2
∴


density =17.78 g/cm³
From the two calculate densities, we will realize that the density in the face-centered cubic structure is closer to the given density.
This makes the elemental gold to have a Face-centered cubic structure.
Answer : The molar mass of unknown substance is, 39.7 g/mol
Explanation : Given,
Mass of unknown substance = 9.56 g
Volume of solution = 100.0 mL
Molarity = 2.41 M
Molarity : It is defined as the number of moles of solute present in one liter of volume of solution.
Formula used :

Now put all the given values in this formula, we get:


Therefore, the molar mass of unknown substance is, 39.7 g/mol