Answer:
There are 1.51 x 1024 molecules of carbon dioxide in 2.50 moles of carbon dioxide.
Explanation:
The large piece of jewelry that has a mass of 132.6 g and when is submerged in a graduated cylinder that initially contains 48.6 ml water and the volume increases to 61.2 ml once the piece of jewelry is submerged, has a density of: 10.523 g/ml
To solve this problem the formulas and the procedures that we have to use are:
Where:
- d= density
- m= mass
- v= volume
- v(f) = final volume
- v(i) = initial volume
Information about the problem:
- m = 132.6 g
- v(i) = 48.6 ml
- v(f) = 61.2 ml
- v = ?
- d =?
Applying the volume formula we get:
v = v(f)-v(i)
v = 61.2 ml - 48.6 ml
v = 12.6 ml
Applying the density formula we get:
d = m/v
d = 132.6 g/12.6 ml
d = 10.523 g/ml
<h3>What is density?</h3>
It is a physical quantity that expresses the ratio of the body mass to the volume it occupies.
Learn more about density in: brainly.com/question/1354972
#SPJ4
The given chemical reaction given above is already balanced such that the number of atoms in the left hand side of the equation is equal to that of the right hand side. Using the dimensional analysis, proper conversion factors and the molar masses,
mass of nitrogen = (0.129 g H₂)(1 mol H₂/2 g H₂)(1 mol N₂/3 mol H₂)(28 g N₂/1 mol N₂)
mass of nitrogen = 0.602 g N₂
Therefore, 0.602 g of nitrogen will be required for he reaction.
Answer:
Explanation:
FIND THE SOLUTION IN THE ATTACHMENT