Answer:
C. the relative number of atoms of each element, using the lowest whole ratio.
Explanation:
The empirical formula is how we simplify the whole formula to simplify it to its smallest indivisible parts.
It is definitely not the actual number of atoms. If you see an empirical formula, don't think that it's the full thing.
It is also not a representation of a compound to show its atoms' arrangement: this would be a Lewis dot structure, or a ball and stick model, or something similar. We don't use the empirical formula for this purpose.
Answer: Flammability is a material's ability to burn in the presence of oxygen.
Explanation: Chemical properties can be observed only when the substance changes into one or more different substances through chemical reactions or transformations. One of the chemical properties is flammability.
Flammability is a material's ability to burn in the presence of oxygen.
Remember, oxygen doesn't burn. Precisely flammable substances obtain substances that burn. Oxygen remains an oxidizing agent, which means it supports the combustion process. Oxygen causes other objects to catch fire at low temperatures and burns hotter and faster. But oxygen itself does not burn. Consequently, if you at present deliver fuel and fire, adding oxygen will provide the fire.
Carbon dioxide is the result of combustion. An example can be seen in firewood in a fireplace. One of the chemical properties of carbon-based wood is having the ability to burn. Chemically the wood turns into carbon dioxide when it burns and leaves a residue of ash. Furthermore, this ash residue cannot be turned back into the wood. Chemical changes result in new substances.
Consider an example of a combustion reaction to methane gas:
Our balanced equation for methane combustion implies that every one CH₄ molecule reacts with two O₂ molecules. The product of combustion is one carbon dioxide molecule and two steam or water vapor molecules.
Answer:
Molar Mass: 138.9818 g/mol
Explanation:
the average speed is 23.4 km per hour cause it is total distance over total time equal to average speed
Answer:
184.62 ml
Explanation:
Let
and
be the initial and
and
be the final pressure, volume, and temperature of the gas respectively.
Given that the pressure remains constant, so
...(i)
= 200 ml
K
K
From the ideal gas equation, pv=mRT
Where p is the pressure, v is the volume, T is the temperature in Kelvin, m is the mass of air in kg, R is the specific gas constant.
For the initial condition,

For the final condition,

Equating equation (i), and (ii)

[from equation (i)]

Putting all the given values, we have

Hence, the volume of the gas at 3 degrees Celsius is 184.62 ml.