Answer:
17
Explanation:
Step 1: Calculate the needed concentrations
[A]i = 1.00 mol/5.00 L = 0.200 M
[B]i = 1.80 mol/5.00 L = 0.360 M
[B]e = 1.00 mol/5.00 L = 0.200 M
Step 2: Make an ICE chart
A(aq) + 2 B(aq) ⇄ C(aq)
I 0.200 0.360 0
C -x -2x +x
E 0.200-x 0.360-2x x
Then,
[B]e = 0.360-2x = 0.200
x = 0.0800
The concentrations at equilibrium are:
[A]e = 0.200-0.0800 = 0.120 M
[B]e = 0.200 M
[C]e = 0.0800 M
Step 3: Calculate the concentration equilibrium constant (K)
K = [C] / [A] × [B]²
K = 0.0800 / 0.120 × 0.200² = 16.6 ≈ 17
Convection currents drive the movement of Earth's rigid tectonic plates in the planet's fluid molten mantle. In places where convection currents rise up towards the crust's surface, tectonic plates move away from each other in a process known as seafloor spreading
Answer:
The effective nuclear charge for a 2nd row electron in Sulfur is +8
Explanation:
Zeff = Z (# of protons) - S (# of shielded electrons)
Since there are 8 electrons in the first and second rows combined, there are 8 shielding electrons.
The number of protons in Sulfur is 16.
Therefore,
Zeff = 16 - 8
Zeff = 8
(It's been awhile, so I am not 100% sure)
Answer:
1.85g per cubic centimeter (g/cm3
Explanation:
because density=mass/volume, so it will be 50g divide by 27ml =. 1.85g/cm3