<span>John Dalton introduced a theory proposing that elements vary because of the mass of their atoms.
He said in his theory that all matter is made up of indivisible blocks called atoms. He also stipulated in his theory that elements are identical thus, have different sizes and masses.
Dalton's theory was different from Niels Bohr who proposed a new atomic model which was also commonly known as the modern atomic theory. Bohr's theory says that atoms are arranged in circular orbits around the nucleus. He patterned his model as the solar system.
</span>
The solubility of a sample will decrease when the size of the sample increases.
When the Size of sample is bigger, it means there is more particles that make up that sample so the amount of solvent to dissolve the sample will also be in the greater amount. Thus, when the sample size increases the solubility decrease. We can also say that size of sample and solubility are inversely proportional to each other.
<h3>
Answer:</h3>
1.827 × 10²⁴ molecules H₂S
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Compounds</u>
- Writing Compounds
- Acids/Bases
<u>Atomic Structure</u>
- Reading a Periodic Table
- Using Dimensional Analysis
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
103.4 g H₂S (Sulfuric Acid)
<u>Step 2: Identify Conversions</u>
Avogadro's Number
Molar Mass of H - 1.01 g/mol
Molar Mass of S - 32.07 g/mol
Molar Mass of H₂S - 2(1.01) + 32.07 = 34.09 g/mol
<u>Step 3: Convert</u>
- Set up:

- Multiply:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 4 sig figs.</em>
1.82656 × 10²⁴ molecules H₂S ≈ 1.827 × 10²⁴ molecules H₂S
<span>When pKas of polyprotic intermediates have a difference of 2 or more you just average them using the equation: pH = (pKa2 + pKa3) / 2 </span>
<span>pKa2 = -log(Ka2) ; pKa3 = -log(Ka3) </span>
<span>so, for this problem, REGARDLESS OF THE CONCENTRATION GIVEN, the answer is: </span>
<span>pH = (7.2076+12.3767) / 2 </span>
<span>pH = 9.79</span>
Answer:
0.00915 M of
remain after 5.16 seconds.
Explanation:
Using integrated rate law for first order kinetics as:
Where,
is the concentration at time t
is the initial concentration
Given that:
The rate constant, k =
s⁻¹
Initial concentration
= 0.054 M
Final concentration
= ? M
Time = 5.16 s
Applying in the above equation, we get that:-
<u>0.00915 M of
remain after 5.16 seconds.</u>