1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aalyn [17]
4 years ago
11

The horizontal surface on which the objects slide is frictionless. If F = 6.0 N and M = 1.0 kg, what is the magnitude of the for

ce exerted on the large block by the small block?

Physics
1 answer:
Setler79 [48]4 years ago
4 0

The image is missing, so i have attached it.

Answer:

The force exerted on the large block by the small block = 8.4 N

Explanation:

From the image attached, the mass of the small block = 2M while the mass of the large block = 3M

Also,Force on small block = F and force on large block = 2F

Equilibrium of forces on the left gives;

2F - N = 3Ma

Thus,

Ma = (2F - N)/3 - - - - eq1

Also, on right hand side, Equilibrium of forces gives;

N - F = 2Ma

Ma = (N - F)/2 - - - - eq2

Equating eq(1) and eq(2) gives us;

(2F - N)/3 = (N - F)/2

Where N is the force exerted on the large block by the small block.

Making N the subject gives;

4F - 2N = 3N - 3F

5N = 7F

N = 7F/5

We are given F = 6N

Thus;

N = 7(6)/5

N = 8.4 N

You might be interested in
Match each word to its definition. (Picture should be included)
Leto [7]

Answer:

flow of electric charges - current

opposition to the flow of an electric current - resistence

stored potential energy at the source of a circuit - voltag

4 0
4 years ago
Alpha particles, each having a charge of +2e and a mass of 6.64 ×10-27 kg, are accelerated in a uniform 0.50 T magnetic field to
sergij07 [2.7K]

Answer:

KE=1.2036\times 10^{-12}\ J

Explanation:

Given:

  • charge on the alpha particle, q=2e=3.2\times 10^{-19}\ C
  • mass of the alpha particle, m=6.64\times 10^{-27}\ kg
  • strength of a uniform magnetic field, B=0.5\ T
  • radius of the final orbit, r=0.5\ m

<u>During the motion of a charge the magnetic force and the centripetal forces are balanced:</u>

q.v.B=m.\frac{v^2}{r}

m.v=q.B.r

where:

v = velocity of the alpha particle

v=\frac{q.B.r}{m}

v=\frac{3.2\times 10^{-19}\times 0.5\times 0.5}{6.64\times 10^{-27}}

v=1.2048\times 10^{7}\ m.s^{-1}

Here we observe that the velocity of the aprticle is close to the velocity of light. So the kinetic energy will be relativistic.

<u>We firstly find the relativistic mass as:</u>

m'=\frac{1}{\sqrt{1-\frac{v^2}{c^2} } } \times m

m'=\frac{6.64\times 10^{-27}}{\sqrt{1-\frac{(1.2048\times 10^7)^2}{(3\times 10^8)^2} } }

m'=6.6533\times10^{-27}\ kg

now kinetic energy:

KE=m'.c-m.c

KE=6.6533\times 10^{-27}\times (3\times 10^8)^2-6.64\times 10^{-27}\times (3\times 10^8)^2

KE=1.2036\times 10^{-12}\ J

6 0
3 years ago
Which of the following are basic solutions? Check all that apply. A. Laundry detergent B. Vinegar C. Drain cleaner D. Antacids
ratelena [41]
A laundry detergent
B vinegar
4 0
4 years ago
Careful measurements have been made of Olympic sprinters in the 100-meter dash. A quite realistic model is that the sprinter's v
mihalych1998 [28]

Answer:

a.

\displaystyle a(0 )=8.133\ m/s^2

\displaystyle a(2)=2.05\ m/s^2

\displaystyle a(4)=0.52\ m/s^2

b.\displaystyle X(t)=11.81(t+1.45\ e^{-0.6887t})-17.15

c. t=9.9 \ sec

Explanation:

Modeling With Functions

Careful measurements have produced a model of one sprinter's velocity at a given t, and it's is given by

\displaystyle V(t)=a(1-e^{bt})

For Carl Lewis's run at the 1987 World Championships, the values of a and b are

\displaystyle a=11.81\ ,\ b=-0.6887

Please note we changed the value of b to negative to make the model have sense. Thus, the equation for the velocity is

\displaystyle V(t)=11.81(1-e^{-0.6887t})

a. What was Lewis's acceleration at t = 0 s, 2.00 s, and 4.00 s?

To compute the accelerations, we must find the function for a as the derivative of v

\displaystyle a(t)=\frac{dv}{dt}=11.81(0.6887\ e^{0.6887t})

\displaystyle a(t)=8.133547\ e^{-0.6887t}

For t=0

\displaystyle a(0)=8.133547\ e^o

\displaystyle a(0 )=8.133\ m/s^2

For t=2

\displaystyle a(2)=8.133547\ e^{-0.6887\times 2}

\displaystyle a(2)=2.05\ m/s^2

\displaystyle a(4)=8.133547\ e^{-0.6887\times 4}

\displaystyle a(4)=0.52\ m/s^2

b. Find an expression for the distance traveled at time t.

The distance is the integral of the velocity, thus

\displaystyle X(t)=\int v(t)dt \int 11.81(1-e^{-0.6887t})dt=11.81(t+\frac{e^{-0.6887t}}{0.6887})+C

\displaystyle X(t)=11.81(t+1.45201\ e^{-0.6887t})+C

To find the value of C, we set X(0)=0, the sprinter starts from the origin of coordinates

\displaystyle x(0)=0=>11.81\times1.45201+C=0

Solving for C

\displaystyle c=-17.1482\approx -17.15

Now we complete the equation for the distance

\displaystyle X(t)=11.81(t+1.45\ e^{-0.6887t})-17.15

c. Find the time Lewis needed to sprint 100.0 m.

The equation for the distance cannot be solved by algebraic procedures, but we can use approximations until we find a close value.

We are required to find the time at which the distance is 100 m, thus

\displaystyle X(t)=100=>11.81(t+1.45\ e^{-0.6887t})-17.15=100

Rearranging

\displaystyle t+1.45\ e^{-0.6887t}=9.92

We define an auxiliary function f(t) to help us find the value of t.

\displaystyle f(t)=t+1.45\ e^{-0.687t}-9.92

Let's try for t=9 sec

\displaystyle f(9)=9+1.45\ e^{-0.687\times 9}-9.92=-0.92

Now with t=9.9 sec

\displaystyle f(9.9)=9.9+1.45\ e^{-0.687\times 9.9}-9.92=-0.0184

That was a real close guess. One more to be sure for t=10 sec

\displaystyle f(10)=10+1.45\ e^{-0.687\times 10}-9.92=0.081

The change of sign tells us we are close enough to the solution. We choose the time that produces a smaller magnitude for f(t).  

At t\approx 9.9\ sec, \text{ Lewis sprinted 100 m}

7 0
3 years ago
Please please help
dsp73

Answer:

true

Explanation:

The law of conservation of charge states that whenever electrons are transferred between objects, the total charge remains the same.

3 0
4 years ago
Other questions:
  • What happens to the efficiency of a ramp if friction is reduced?
    8·1 answer
  • When a warm air mass catches up with a cold air mass, forming a warm front, the warm air slides over the top of the cold air, be
    12·1 answer
  • How does Connecticut energy affect the stopping distance of a vehicle traveling at 30 mph compared to the same vehicle traveling
    6·1 answer
  • jennys history teacher always sets the tempature in her classroom very low jenny always shivers when she is in class because she
    15·2 answers
  • What happens to energy lost during a transformation
    6·1 answer
  • A car is traveling at a velocity of 7.5 m/s. How far will it get in 34 sec
    10·1 answer
  • Explain the centripetal force or Newton's second law...
    11·2 answers
  • It is late and Carlos is sliding down a rope from his third-floor window to meet his friend Juan. As he slides down the rope fas
    6·1 answer
  • Power is calculated by multiplying voltage by
    6·1 answer
  • An influence that can deform a flexible abject or change the motion of an object with mass.​
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!