Answer:
Explanation:
The magnetic field due to straight wire is into the square coil.
As the current in straight wire decreases the magnetic flux in the coil decreases
. The induced magnetic field is into the coil.The induced current is along +y direction
The period of a pendulum is given by

where L is the pendulum length and g is the gravitational acceleration.
We can write down the ratio between the period of the pendulum on the Moon and on Earth by using this formula, and we find:

where the labels m and e refer to "Moon" and "Earth".
Since the gravitational acceleration on Earth is

while on the Moon is

, the ratio between the period on the Moon and on Earth is
Answer:
The engine would be warm to touch, and the exhaust gases would be at ambient temperature. The engine would not vibrate nor make any noise. None of the fuel entering the engine would go unused.
Explanation:
In this ideal engine, none of these events would happen due to the nature of the efficiency.
We can define efficiency as the ratio between the used energy and the potential generable energy in the fuel.
n=W, total/(E, available).
However, in real engines the energy generated in the combustion of the fuel transforms into heat (which heates the exhost gases, and the engine therefore transfering some of this heat to the environment). Also, there are some mechanical energy loss due to vibrations and sound, which are also energy that comes from the fuel combustion.
Molecules in the solid phase have the least amount of energy, while gas particles have the greatest amount of energy.
Answer:
7.6 s
Explanation:
Considering kinematics formula for final velocity as

Where v and u are final and initial velocities, a is acceleration and s is distance moved.
Making v the subject then

Substituting 8.8 m/s for u, 138 m for s and 2.45 m/s2 for a then

Also, v=u+at and making t the subject of the formula

Substituting 27.45 m/s for v, 8.8 m/s for u and 2.45 m/s for a then

Therefore, it needs 7.6 seconds to travel