Answer:
The tension in the string is
.
Explanation:
For a string with tension
and linear density
carrying a transverse wave at speed
it is true that

solving for
we get:

Now, the transverse wave covers the distance of 7.4mm in 0.88s, which means it's speed is

And it's linear density (mass per unit length) is

Therefore, the tension in the cord is

or in micro newtons

Answer:
28.23 years
Explanation:
I = 1100 A
L = 230 km = 230, 000 m
diameter = 2 cm
radius, r = 1 cm = 0.01 m
Area, A = 3.14 x 0.01 x 0.01 = 3.14 x 10^-4 m^2
n = 8.5 x 10^28 per cubic metre
Use the relation
I = n e A vd
vd = I / n e A
vd = 1100 / (8.5 x 10^28 x 1.6 x 10^-19 x 3.14 x 10^-4)
vd = 2.58 x 10^-4 m/s
Let time taken is t.
Distance = velocity x time
t = distance / velocity = L / vd
t = 230000 / (2.58 x 10^-4) = 8.91 x 10^8 second
t = 28.23 years
Answer:
C. a rolling bowling ball
I just answered this question on my quiz.
This is in the thermosphere which is at an altitude of 85-520km
Answer:
a) 
b) x = 4.47 cm
c) 
d) x = 1.48 cm
Explanation:
a) The center of mass is equal to:

Where m is the mass of beads and x is the distances, if x₁ = d₁, x₂ = d₂ and x₃ = d₃

b) If
m₁ = 23g
m₂ = 15 g
m₃ = 58 g
d₁ = 1.1 cm
d₂ = 1.9 cm
d₃ = 3.2 cm

c) The center of the mass of the beads realtive to the center of bead is:

d) 