Answer:
Option A. 9.4 L
Explanation:
From the question given above, the following data were obtained:
Initial volume (V₁) = 8 L
Initial temperature (T₁) = 293 K
Final temperature (T₂) = 343 K
Final volume (V₂) =?
V₁ / T₁ = V₂ / T₂
8 / 293 = V₂ / 343
Cross multiply
293 × V₂ = 8 × 343
293 × V₂ = 2744
Divide both side by 293
V₂ = 2744 / 293
V₂ = 9.4 L
Therefore, the final volume of the gas is 9.4 L
The best and most correct answer among the choices provided by the question is the second choice , b. sodium hydroxide .
Hope my answer would be a great help for you. If you have more questions feel free to ask here at Brainly.
To Find :
The volume of 12.1 moles hydrogen at STP.
Solution :
We know at STP, 1 mole of gas any gas occupy a volume of 22.4 L.
Let, volume of 12.1 moles of hydrogen is x.
So, x = 22.4 × 12.1 L
x = 271.04 L
Therefore, the volume of hydrogen gas at STP is 271.04 L.
Answer:
The total heat required is 691,026.36 J
Explanation:
Latent heat is the amount of heat that a body receives or gives to produce a phase change. It is calculated as: Q = m. L
Where Q: amount of heat, m: mass and L: latent heat
On the other hand, sensible heat is the amount of heat that a body can receive or give up due to a change in temperature. Its calculation is through the expression:
Q = c * m * ΔT
where Q is the heat exchanged by a body of mass m, constituted by a substance of specific heat c and where ΔT is the change in temperature (Tfinal - Tinitial).
In this case, the total heat required is calculated as:
- Q for liquid water. This is, raise 248 g of liquid water from O to 100 Celsius. So you calculate the sensible heat of water from temperature 0 °C to 100° C
Q= c*m*ΔT

Q=103,763.2 J
- Q for phase change from liquid to steam. For this, you calculate the latent heat with the heat of vaporization being 40 and being 248 g = 13.78 moles (the molar mass of water being 18 g / mol, then
)
Q= m*L

Q=562.0862 kJ= 562,086.2 J (being 1 kJ=1,000 J)
- Q for temperature change from 100.0
∘
C to 154
∘
C, this is, the sensible heat of steam from 100 °C to 154°C.
Q= c*m*ΔT

Q=25,176.96 J
So, total heat= 103,763.2 J + 562,086.2 J + 25,176.96 J= 691,026.36 J
<u><em>The total heat required is 691,026.36 J</em></u>
Answer:
The water freezes and becomes solid ice