Answer:
Rubidium-85=61.2
Rubidium-87=24.36
Atomic Mass=85.56 amu
Explanation:
To find the atomic mass, we must multiply the masses of the isotope by the percent abundance, then add.
<u>Rubidium-85 </u>
This isotope has an abundance of 72%.
Convert 72% to a decimal. Divide by 100 or move the decimal two places to the left.
- 72/100= 0.72 or 72.0 --> 7.2 ---> 0.72
Multiply the mass of the isotope, which is 85, by the abundance as a decimal.
- mass * decimal abundance= 85* 0.72= 61.2
Rubidium-85=61.2
<u>Rubidium-87</u>
This isotope has an abundance of 28%.
Convert 28% to a decimal. Divide by 100 or move the decimal two places to the left.
- 28/100= 0.28 or 28.0 --> 2.8 ---> 0.28
Multiply the mass of the isotope, which is 87, by the abundance as a decimal.
- mass * decimal abundance= 87* 0.28= 24.36
Rubidium-87=24.36
<u>Atomic Mass of Rubidium:</u>
Add the two numbers together.
- Rb-85 (61.2) and Rb-87 (24.36)
So the molarity equation is moles of solute/liters of solution. so i’m pretty sure the answer should be 0.63/0.70= .9
The statement above is FALSE.
Unlabeled atom joined to carbon atoms which are not directly part of a ring structure are assumed to be CARBON ATOMS. In a ring structure, an unlabeled atom at the angle where two lines joined together is always assumed to be a carbon atom<span />
Answer:
Solution given:
heat[Q]=?
temperature [T]=0.64°C
specific heat capacity [c]=0.880 J/g °C
mass[m]=3g
we have
Q=mcT=3*0.880*0.64°=1.69Joule
<u>the</u><u> </u><u>required</u><u> heat </u><u>is</u><u> </u><u>1.69</u><u>Joule</u><u>.</u>