Answer:
Explanation:
101 dB = 10.1 B.
Maximum intensity of sound allowed = 10.1 B
Intensity of sound in terms of W/m² can be found as follows
log (I / I₀) = 10.1
I / I₀ = 10¹⁰°¹
I = I₀ X 10¹⁰°¹
= 10⁻¹² X 10¹⁰°¹
= 10⁻¹°⁹ W/m²
105 m above the ground the this intensity will be 105² times
intensity at source point = 10⁻¹°⁹ x 105²
= 138.79 W/m²
energy of sound from source
= 4π times
= 4 x 3.14 x 138.79
= 1743.28W/m²
To calculate in terms of decibel :
log 1743.28 / 10⁻¹²
= log 1743.28 +12
= 15.24 B
= 152.4 dB .
152.4 dB .
Answer:
f" = 40779.61 Hz
Explanation:
From the question, we see that the bat is the source of the sound wave and is initially at rest and the object is in motion as the observer, thus;
from the Doppler effect equation, we can calculate the initial observed frequency as:
f' = f(1 - (v_o/v))
We are given;
f = 46.2 kHz = 46200 Hz
v_o = 21.8 m/s
v is speed of sound = 343 m/s
Thus;
f' = 46200(1 - (21/343))
f' = 43371.4285 Hz
In the second stage, we see that the bat is now a stationary observer while the object is now the moving source;
Thus, from doppler effect again but this time with the source going away from the obsever, the new observed frequency is;
f" = f'/(1 + (v_o/v))
f" = 43371.4285/(1 + (21.8/343))
f" = 40779.61 Hz
Answer:
option C
Explanation:
Given,
Refractive index of medium 1 = n₁
Refractive index of medium 2 = n₂
For total internal reflection to take place light should move from denser medium to the rarer medium.
Here Total internal reflection take place at the boundary of medium 1 and medium 2 so, the refractive index of medium 1 is more than medium 2
n₁ > n₂
The correct answer is option C
Answer:
Explanation:
Given the height reached by a balloon after t sec modeled by the equation
h=1/2t²+1/2t
a) To calculate the height of the balloon after 40 secs we will substitute t = 40 into the modeled equation and calculate the value of t
If h(t)=1/2t²+1/2t
h(40) = 1/2(40)²+1/2 (40)
h(40) = 1600/2 + 40/2
h(40) = 800 + 20
h(40) = 820 feet
The height of the balloon after 40 secs is 820 feet
b) Velocity is the change of displacement of a body with respect to time.
v = dh/dt
v(t) = 2(1/2)t²⁻¹ + 1/2
v(t) = t + 1/2
when v = 0sec
v(0) = 0 + 1/2
v(0) = 1/2 ft/sec
at v = 30secs
v(30) = 30 + 1/2
v(30) = 30 1/2 ft/sec
average velocity = v(30) - v(0)
average velocity = 30 1/2 - 1/2
average velocity of the balloon between t = 0 and t = 30 = 30 ft/sec
c) Velocity is the change of displacement of a body with respect to time.
v = dh/dt
v(t) = 2(1/2)t²⁻¹ + 1/2
v(t) = t + 1/2
The velocity of the balloon after 30secs will be;
v(30) = 30+1/2
v(30) = 30.5ft/sec
The velocity of the balloon after 30 secs is 30.5 feet/sec
(A) We can solve the problem by using Ohm's law, which states:

where
V is the potential difference across the electrical device
I is the current through the device
R is its resistance
For the heater coil in the problem, we know

and

, therefore we can rearrange Ohm's law to find the current through the device:

(B) The resistance of a conductive wire depends on three factors. In fact, it is given by:

where

is the resistivity of the material of the wire
L is the length of the wire
A is the cross-sectional area of the wire
Basically, we see that the longer the wire, the larger its resistance; and the larger the section of the wire, the smaller its resistance.