Answer:
²³⁸₉₃Np → Pu₉₄²³⁸ + ⁰₋₁e
Explanation:
²³⁸₉₃Np → Pu₉₄²³⁸ + ⁰₋₁e
Beta radiations:
Beta radiations are result from the beta decay in which electron is ejected. The neutron inside of the nucleus converted into the proton an thus emit the electron which is called β particle.
The mass of beta particle is smaller than the alpha particles.
They can travel in air in few meter distance.
These radiations can penetrate into the human skin.
The sheet of aluminium is used to block the beta radiation
⁴₆C → ¹⁴₇N + ⁰₋₁e
The beta radiations are emitted in this reaction. The one electron is ejected and neutron is converted into proton.
Answer:
The law of definite proportions. I had the same question for chemistry and this is what they said was right so I got 100%.
Explanation:
Answer: 5 is the molarity
Explanation:
The molarity formula is moles over liters and that in your case is 2.50 moles divided by .500 L which results in 5 which is your answear hope this helped god bless
Answer:
- <em>The net charge of the ionic compound calcium fluoride is </em><u><em>zero (0).</em></u>
<em>Explanation:</em>
<em>Ionic compounds,</em> such as covalent ones, have zero net charge; this is, they are neutral.
Substances with net positive charge are cations and substances with net negative charge are anions.
The charges in the <em>ionic compound calcium flouride</em> are distributed in this way:
- Calcium charge: Ca²⁺: this is, each calcium ion has a 2 positive charge
- Fluoride charge: F⁻: each fluoride ion has a 1 negative charge.
- Then, the <em>net charge</em> is: 1 × (2+) + 2 × (1-) = +2 - 2 = 0.
So, a two positve charge, from one calcium ion, is equal to two negative charges, from two fluoride tions, yielding a <u>zero net charge</u>.
To solve this we assume
that the gas is an ideal gas. Then, we can use the ideal gas equation which is
expressed as PV = nRT. At a constant temperature and number of moles of the gas
the product of PV is equal to some constant. At another set of condition of
temperature, the constant is still the same. Calculations are as follows:
P1V1 =P2V2
<span>P2 = P1V1/V2</span>
<span>
</span>
<span>The correct answer is the first option. Pressure would increase. This can be seen from the equation above where V2 is indirectly proportional to P2.</span>