Answer:
This solution is quite lengthy
Total system = nRT
n was solved to be 0.02575
nH20 = 0.2x0.02575
= 0.00515
Nair = 0.0206
PH20 = 0.19999
Pair = 1-0.19999
= 0.80001
At 15⁰c
Pair = 0.4786atm
I used antoine's equation to get pressure
The pressure = 0.50
2. Moles of water vapor = 0.0007084
Moles of condensed water = 0.0044416
Grams of condensed water = 0.07994
Please refer to attachment. All solution is in there.
-well, we all need water as living organisms in order to live. water helps us clean our body (just like you clean yourself in a shower to clean your skin),but drinking water helps you to take a shower inside your body! (sounds weird but true XD) you get the point... here are a few things water does to our body:
- water helps helps our skin to look beautiful (you can say youthful skin) and even beauty itself.
- it trashes body waste and toxins (like i said above)
- it gives us nutrients and minerals
- it helps us to maintain out blood pressure
- it also helps to regulate our body temperature
- it transfers oxygen through the whole body
- it helps with digestion
- weigh loss
- gives you energy ( thats why when your exercising you need to drink water every 15 min XD)
-prevents from you have a stinky breath *-*
- it helps with back-pain, headaches, heart health...etc
- it helps boost your immune system
- increases your brain power
so those are what i got for you about why water is important to us :D
Answer:
The correct option is (d).
Explanation:
It is given that,
1$ = 1500 pesos
We need to convert 360 pesos into dimes
We can convert 360 pesos to dollars as follows:

360 pesos is equal to $0.24
Also, 1 dollar = 10 dimes
We can covert 0.24 dollar to dimes as follows :
0.24 dollar = 10 × 0.24 dimes
0.24 dollar = 2.4 dimes
or
360 pesos = 2.4 dimes
<u>Answer:</u> The
for HCN (g) in the reaction is 135.1 kJ/mol.
<u>Explanation:</u>
Enthalpy change is defined as the difference in enthalpies of all the product and the reactants each multiplied with their respective number of moles. The equation used to calculate enthalpy change is of a reaction is:
For the given chemical reaction:

The equation for the enthalpy change of the above reaction is:
![\Delta H_{rxn}=[(2\times \Delta H_f_{(HCN)})+(6\times \Delta H_f_{(H_2O)})]-[(2\times \Delta H_f_{(NH_3)})+(3\times \Delta H_f_{(O_2)})+(2\times \Delta H_f_{(CH_4)})]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%282%5Ctimes%20%5CDelta%20H_f_%7B%28HCN%29%7D%29%2B%286%5Ctimes%20%5CDelta%20H_f_%7B%28H_2O%29%7D%29%5D-%5B%282%5Ctimes%20%5CDelta%20H_f_%7B%28NH_3%29%7D%29%2B%283%5Ctimes%20%5CDelta%20H_f_%7B%28O_2%29%7D%29%2B%282%5Ctimes%20%5CDelta%20H_f_%7B%28CH_4%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![-870.8=[(2\times \Delta H_f_{(HCN)})+(6\times (-241.8))]-[(2\times (-80.3))+(3\times (0))+(2\times (-74.6))]\\\\\Delta H_f_{(HCN)}=135.1kJ](https://tex.z-dn.net/?f=-870.8%3D%5B%282%5Ctimes%20%5CDelta%20H_f_%7B%28HCN%29%7D%29%2B%286%5Ctimes%20%28-241.8%29%29%5D-%5B%282%5Ctimes%20%28-80.3%29%29%2B%283%5Ctimes%20%280%29%29%2B%282%5Ctimes%20%28-74.6%29%29%5D%5C%5C%5C%5C%5CDelta%20H_f_%7B%28HCN%29%7D%3D135.1kJ)
Hence, the
for HCN (g) in the reaction is 135.1 kJ/mol.
D. Matter and energy are the same.