Answer:
2 CH2 + 3 O2 = 2 CO2 + 2 H2O
Explanation:
This is what I think that you meant by the question listed. When balancing a chemical equation, you want to make sure that there are equal amounts of each element on each side.
Originally, the equation's elements looked like this: 1 C on left & 1 C on right; 2 H on left & 2 H on right; 2 O on left and 3 O on right. Because these are not balanced, you need to add coefficients.
When adding coefficients, you need to make sure that all of the elements stay balanced, not just one that you are trying to fix. I know that some equations are really difficult to balance, and when that is the case, there are equation balancing websites that can help out.
However, what always helps me is making a chart and continuing to keep up with the changes I am making. It is a trial and error process.
Answer:
To have the electronic configuration equal to 1s²2s²2p⁶3s²3p⁶4s²3d⁷, the chemical element must have an electrical charge equal to 27, that is, it must have 27 electrons, such as Cobalt (Co), for example.
Explanation:
The electronic configuration shown in the question above is known as the Linus Pauling distribution and represents the energy sub-levels that an electrically charged atom can have in relation to the amount of electrons it has.
The layers sub-levels are presented in the following order 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹º 4p⁶ 5s² 4d¹º 5p⁶ 6s² 4f14 5d¹º 6p⁶ 7s² 5f14 6d¹º 7p⁶. Where the small numbers represent the number of electrons in each sub-level and the large numbers represent the layers of electronic distribution.
Accordingly, we can see that an atom that has the configuration 1s²2s²2p⁶3s²3p⁶4s²3d⁷ has 27 electrons, like Cobalt.
If people have children, If people die, and if there is a fire or volcanic eruption.
Explanation:
When the student mixed the solution sodium carbonate with solution of copper(II) sulfate ; Copper Hydroxocarbonate , sodium sulfate and carbon dioxide gas was obtained as a products.
The balanced chemical reaction

Where:
= Copper(II) Hydroxocarbonate
= Sodium carbonate
= Copper(II) sulfate
= Sodium sulfate
= Carbon-dioxide
Food molecules contain biochemical energy which is made available by a process called respiration.
Respiration is the process within cells by which living things break down food chemicals in their bodies and use them as a source of energy.
The proteins, lipids and polysaccharides that make up most of the food we eat must be broken down into smaller molecules before our cells can use them either as a source of energy or as building blocks for other molecules. This process is named catabolism and occurs in 3 stages.
Stage 1 is the enzymatic breakdown of food molecules in the digestion process into their monomer subunits- amino acids, glucose and glycerol.
Stage 2 is the process of glycolysis where each molecule of glucose is converted to pyruvate.
Stage 3 is production of ATP, the form of energy needed by the body to function. This stage takes place in the mitochondria of the cells. ATP is produced from conversion of pyruvate to acetylCoA in a process called the Citric Acid Cycle.