Answer:
The correct answer is 0.36 mol
Explanation:
First we have to calculate the molecular weight (Mw) of H₃BO₃ from the molar masses of the elements:
Mw(H₃BO₃)= 3 x Molar mass H + Molar mass B + (3 x Molar mass O)
= 3 x 1 g/mol + 10.8 g/mol + (3 x 16 g/mol)
= 61.8 g/mol
The molecular weight indicates that there are 61.6 grams per mol of substance. The scientist has 22.5 g, thus we can calculate the number of moles of H₃BO₃ by dividing the mass into the molecular weight as follows:
Number of moles of H₃BO₃ = mass/Mw= (22.5 g)/(61.8 g/mol) = 0.36 mol
There are 0.36 mol of H₃BO₃ in 750.0 mL of solution.
Explanation:
to set 1 container inside, without air movement. 1 outside in that location. compare the 2 containers to see which container has less or more fluid...
They speed up when they get hotter and they slow down when they get colder. I think