Answer:
27°C or 300K
Explanation
We were told that the pressureof the system decreased by 10 times implies that P2= P1/10
Where P2=final pressure
P1= initial pressure
Wew were also told that the volume of the system increased by 5 times this implies that V2= 5×V1
Where T2= final temperature =-123C= 273+(-123C)=150K
T1= initial temperature
But from gas law
PV=nRT
As n and R are constant
P1V1/T1 = P2V2/T2
T1= P1V1T2/P2V2
T1=2×T2
T1=2×150
T1=300K
=300-273
=27°C
the initial temperature (°C) of a system is 27°C
0.73 M is the concentration of sulfuric acid that needed 47 mL of 0.39M potassium hydroxide solution to neutralize a 25 mL sample of the sulfuric acid solution.
Explanation:
Data given:
Volume of the base = 47 ml
molarity of the base= 0.39 M
volume of the acid = 25 ml
molarity of the acid =?
For titration reaction between acid and base, the volume or molarity of any of the base or acid can be determined. The formula used:
Macid X Vacid = Vbase x Mbase
Macid = 
putting the values given in the rearranged equation above:
Macid = 
= 0.73 M
The concentration of the sulphuric acid needed is 0.73 M.
Answer:
Concentration of chloride ions = 0.584M
Explanation:
The step by step calculations is shown as attached below.
Answer:
the last one
Explanation:
one atom had a higher electronegativity than the atom it is sharing with.
Answer:
a. Remaining at rest requires the use of ATP.
Explanation:
The resting membrane potential is maintained by the sodium-potassium pump. The sodium potassium pump does this by actively pumping sodium ions out of the cell and potassium ions inside the cell in a ratio of 3:2. This movement of ions by the sodium-potassium pump is against their concentration gradient. In a neuron at rest, there are more sodium ions outside the cell than there are inside the cell. Also, there are are more potassium ions inside the cell than there are outside the cell. However, there are ion channels through which these ions enter and leave the cell. Sodium ion channels allow sodium to enter the cell following its concentration gradient, whereas, potassium ion channels allow potassium to leave the cell following its concentration gradient. However, more potassium ions leave the cell than do sodium ions enter the cell because of the higher permeability of the cell to potassium ions.
In order to maintain the resting membrane potential, the sodium potassium pump powered by the hydrolysis of an ATP molecules pumps sodium ions out of the cell and potassium ions into the cell.
<em>Therefore, the correct option is A, as ATP is needed by the sodium-potassium pump in order to maintain the resting membrane potential.</em>