1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Umnica [9.8K]
3 years ago
6

At time t=0 a grinding wheel has an angular velocity of 24.0 rad/s. It has a constant angular acceleration of 35.0 rad/s^2 until

a circuit breaker trips at time t= 2.50 s. From then on, the wheel turns through an angle of 440 rad as it coasts to a stop at constant angular deceleration.a.) Through what total angle did the wheel turn between t= 0 and the time it stopped? answer in radb.) At what time does the wheel stop? (secs)c.)What was the wheel's angular acceleration as it slowed down?Express your answer in radians per second per second.
Physics
2 answers:
ycow [4]3 years ago
6 0

Answer:

Ф_T =544

The wheel will stop after 10 s.  

α_z = -11.15 rad/s^2

Explanation:

The angular acceleration is constant. Thus, we will apply the equations of rotation with constant angular acceleration model.

(a) In order to calculate the total angle, we will divide the entire interval from t = 0 to the time the wheel stops into two intervals.  

From t = 0 to t = 2 s:  

Ф-Ф_o =1/2(w_0z+w_z)t                       (1)

We will calculate w_z first:  

w_z = w_0x +α_xt

w_z = 24 + (35)(2.5)

w_z = 111.5

Substitute w_x into Eq.1  

Ф-Ф_o = 1/2(24+111.5)(2)

Ф-Ф_o = 136 rad

We can calculate it directly from the following equation:  

Ф-Ф_o = w_0x*t+1/2a_xt^2

Ф-Ф_o = 24*2.5+1/2*35*2.5

Ф-Ф_o =103.75 rad

Thus, the total angle the wheel turned between t = 0 and the time it stopped:  

Ф_T =103.75 +440

Ф_T =544

(b)  

We will take the interval from when the circuit breaker trips until the wheel comes to a stop.  

w_oz = 111.5 rad/s  

wz = 0 the wheel will stop at the end. 1

Ф-Ф_o =1/2(w_0z+w_z)t    

440 = 1/2(111.5+0)*t

t = 8s

Adding t of the first interval to t of the second interval :  

t_T = 2 + 8  =10

The wheel will stop after 10 s.  

(c)  

We will take the interval from when the circuit breaker trips until the wheel comes to a stop.  

w_oz = 111.5 rad/s  

w_z = 0  

 w_x =w_oz+α_z*t

α_z = -11.15 rad/s^2

Sav [38]3 years ago
4 0

Answer:

a) \Delta \theta = 617.604\,rad, b) \Delta t = 10.392\,s, c) \alpha = -14.128\,\frac{rad}{s^{2}}

Explanation:

a) The final angular speed at the end of the acceleration stage is:

\omega = 24\,\frac{rad}{s} + \left(35\,\frac{rad}{s^{2}}\right) \cdot (2.50\,s)

\omega = 111.5\,\frac{rad}{s}

The angular deceleration is:

\alpha = \frac{\omega^{2}-\omega_{o}^{2}}{2\cdot \theta}

\alpha = \frac{\left(0\,\frac{rad}{s} \right)^{2}-\left(111.5\,\frac{rad}{s} \right)^{2}}{2\cdot (440\,rad)}

\alpha = -14.128\,\frac{rad}{s^{2}}

The change in angular position during the acceleration stage is:

\theta = \frac{\left(111.5\,\frac{rad}{s} \right)^{2}-\left(0\,\frac{rad}{s} \right)^{2}}{2\cdot \left(35\,\frac{rad}{s^{2}} \right)}

\theta = 177.604\,rad

Finally, the total change in angular position is:

\Delta \theta = 440\,rad + 177.604\,rad

\Delta \theta = 617.604\,rad

b) The time interval of the deceleration interval is:

\Delta t = \frac{0\,\frac{rad}{s} - 111.5\,\frac{rad}{s} }{-14.128\,\frac{rad}{s^{2}} }

\Delta t = 7.892\,s

The time required for the grinding wheel to stop is:

\Delta t = 2.50\,s + 7.892\,s

\Delta t = 10.392\,s

c) The angular deceleration of the grinding wheel is:

\alpha = -14.128\,\frac{rad}{s^{2}}

You might be interested in
HELP ASAP TIMED TEST
balu736 [363]

Answer:

<em>Correct choice: b 4H</em>

Explanation:

<u>Conservation of the mechanical energy</u>

The mechanical energy is the sum of the gravitational potential energy GPE (U) and the kinetic energy KE (K):

E = U + K

The GPE is calculated as:

U = mgh

And the kinetic energy is:

\displaystyle K=\frac{1}{2}mv^2

Where:

m = mass of the object

g = gravitational acceleration

h = height of the object

v = speed at which the object moves

When the snowball is dropped from a height H, it has zero speed and therefore zero kinetic energy, thus the mechanical energy is:

U_1 = mgH

When the snowball reaches the ground, the height is zero and the GPE is also zero, thus the mechanical energy is:

\displaystyle U_2=\frac{1}{2}mv^2

Since the energy is conserved, U1=U2

\displaystyle mgH=\frac{1}{2}mv^2    \qquad\qquad [1]

For the speed to be double, we need to drop the snowball from a height H', and:

\displaystyle mgH'=\frac{1}{2}m(2v)^2

Operating:

\displaystyle mgH'=4\frac{1}{2}m(v)^2 \qquad\qquad [2]

Dividing [2] by [1]

\displaystyle \frac{mgH'}{mgH}=\frac{4\frac{1}{2}m(v)^2}{\frac{1}{2}m(v)^2}

Simplifying:

\displaystyle \frac{H'}{H}=4

Thus:

H' = 4H

Correct choice: b 4H

4 0
3 years ago
Tell the value of the underlined digit 843,208,732,833 eight is underlined
devlian [24]
The value of the underlined 8 is, hundred billion's. Hope this helped!
4 0
3 years ago
Read 2 more answers
How much force is required to accelerate a 12 kg mass at 5 m/s 2
Savatey [412]

Answer:

60 N

Explanation:

This is just Newton's Second Law

F = m*a

F = ?

m = 12 kg

a = 5 m/^2

F = 5*12 = 60 Newtons

4 0
2 years ago
Can someone please help me
Mars2501 [29]
The correct answer is letter b.

To find the answer follow the following steps.
1. 6524.96 x .25 = X

2. 1631.24 = X

This works for all of the given answers to find the correct answer.
5 0
3 years ago
6) Find the speed a spherical raindrop would attain by falling from 4.00 km. Do this:a) In the absence of air dragb) In the pres
sleet_krkn [62]

We are asked to determine the velocity of a rain drop if it falls from 4 km.

To do that we will use the following formula:

2ah=v_f^2-v_0^2

Where:

\begin{gathered} a=\text{ acceleration} \\ h=\text{ height} \\ v_f,v_0=\text{ final and initial velocity} \end{gathered}

If we assume the initial velocity to be 0 we get:

2ah=v_f^2

The acceleration is the acceleration due to gravity:

2gh=v_f^2

Now, we take the square root to both sides:

\sqrt{2gh}=v_f

Now, we substitute the values:

\sqrt{2(9.8\frac{m}{s^2})(4000m)}=v_f

solving the operations:

280\frac{m}{s}=v

Therefore, the velocity without air drag is 280 m/s.

Part B. we are asked to determine the velocity if there is air drag. To do that we will use the following formula:

F_d=\frac{1}{2}C\rho_{air}Av^2

Where:

\begin{gathered} F_d=drag\text{ force} \\ C=\text{ constant} \\ \rho_{air}=\text{ density of air} \\ A=\text{ area} \\ v=\text{ velocity} \end{gathered}

We need to determine the drag force. To do that we will use the following free-body diagram:

Since the velocity that the raindrop reaches is the terminal velocity and its a constant velocity this means that the acceleration is zero and therefore the forces are balanced:

F_d=mg

Now, we determine the mass of the raindrop using the following formula:

m=\rho_{water}V

Where:

\begin{gathered} \rho_{water}=\text{ density of water} \\ V=\text{ volume} \end{gathered}

The volume is the volume of a sphere, therefore:

m=\rho_{water}(\frac{4}{3}\pi r^3)

Since the diameter of the raindrop is 3 millimeters, the radius is 1.5 mm or 0.0015 meters. Substituting we get:

m=(0.98\times10^3\frac{kg}{m^3})(\frac{4}{3}\pi(0.0015m)^3)

Solving the operations:

m=1.39\times10^{-5}kg

Now, we substitute the values in the formula for the drag force:

F_d=(1.39\times10^{-5}kg)(9.8\frac{m}{s^2})

Solving the operations:

F_d=1.36\times10^{-4}N

Now, we substitute in the formula:

1.36\times10^{-4}N=\frac{1}{2}C\rho_{air}Av^2

Now, we solve for the velocity:

\frac{1.36\times10^{-4}N}{\frac{1}{2}C\rho_{air}A}=v^2

Now, we substitute the values. We will use the area of a circle:

\frac{1.36\times10^{-4}N}{\frac{1}{2}(0.45)(1.21\frac{kg}{m^3})(\pi r^2)}=v^2

Substituting the radius:

\frac{1.36\cdot10^{-4}N}{\frac{1}{2}(0.45)(1.21\frac{kg}{m^{3}})(\pi(0.0015m)^2)}=v^2

Solving the operations:

70.67\frac{m^2}{s^2}=v^2

Now, we take the square root to both sides:

\begin{gathered} \sqrt{70.67\frac{m^2}{s^2}}=v \\  \\ 8.4\frac{m}{s}=v \\  \end{gathered}

Therefore, the velocity is 8.4 m/s

7 0
1 year ago
Other questions:
  • Is it plagiarism/copying to do a science fair project that is similar to one that has been done already, if you modify certain a
    12·2 answers
  • Why are sunlight and gravity not considered matter?
    5·2 answers
  • An astronaut in space cannot use a scale or balance to weigh objects because there is no gravity. But she does have devices to m
    8·1 answer
  • Look at the image of this rock formation near the coast of Palau, Italy. Which factors could contribute to a collapse of the led
    14·2 answers
  • Why are electromagnets, rather than permanent magnets, used in MRLs?
    5·1 answer
  • What is a crystalline solid?​
    7·1 answer
  • If 4.1 × 1021 electrons pass through a 40 Ω resistor in 5 min, what is the potential difference across the resistor? The fundame
    15·1 answer
  • Two spheres of equal mass, A and B. are projected off the edge of a 2.0 m bench. Sphere A has a horizontal velocity of 5.0 m/s a
    5·1 answer
  • Which of the following is a purpose of rules in sports and games? (5 points)
    12·1 answer
  • How long will it take an object traveling at 7 m/s to reach a distance of 26 meters
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!