Answer:
The answer is the 1st one
Answer:
<h3>1.01 s</h3>
Explanation:
Using the equation of motion S = ut+1/2gt² to solve the problem where;
u is the initial velocity of the chocolate = 0m/s
t is the time taken
g is the acceleration due to gravity = 9.81m/s²
S is the height of fall = 5.0m
Substituting the given parameter into the formula to get the time t we have;
5 = 0(t)+1/2(9.81)t²
5 = 4.905t²
t² = 5/4.905
t² = 1.019
t = √1.019
t = 1.009 secs
<em>Hence it will take 1.01 secs for me to catch the chocolate bar</em>
Answer:
1.92 J
Explanation:
From the question given above, the following data were obtained:
Mass (m) = 200 Kg
Spring constant (K) = 10⁶ N/m
Workdone =?
Next, we shall determine the force exerted on the spring. This can be obtained as follow:
Mass (m) = 200 Kg
Acceleration due to gravity (g) = 9.8 m/s²
Force (F) =?
F = m × g
F = 200 × 9.8
F = 1960 N
Next we shall determine the extent to which the spring stretches. This can be obtained as follow:
Spring constant (K) = 10⁶ N/m
Force (F) = 1960 N
Extention (e) =?
F = Ke
1960 = 10⁶ × e
Divide both side by 10⁶
e = 1960 / 10⁶
e = 0.00196 m
Finally, we shall determine energy (Workdone) on the spring as follow:
Spring constant (K) = 10⁶ N/m
Extention (e) = 0.00196 m
Energy (E) =?
E = ½Ke²
E = ½ × 10⁶ × (0.00196)²
E = 1.92 J
Therefore, the Workdone on the spring is 1.92 J
There are missing data in the text of the problem (found them on internet):
- speed of the car at the top of the hill:

- radius of the hill:

Solution:
(a) The car is moving by circular motion. There are two forces acting on the car: the weight of the car

(downwards) and the normal force N exerted by the road (upwards). The resultant of these two forces is equal to the centripetal force,

, so we can write:

(1)
By rearranging the equation and substituting the numbers, we find N:

(b) The problem is exactly identical to step (a), but this time we have to use the mass of the driver instead of the mass of the car. Therefore, we find:

(c) To find the car speed at which the normal force is zero, we can just require N=0 in eq.(1). and the equation becomes:

from which we find
Answer:
this is because the light rays get reflected irregularly
Explanation: