<span>It is LandSat, a NASA based satelite that records, on a daily basis, multiple reflected wavelengths from the Earth's surface. The satelite measures reflection from both land and ocean upon the Earth. The system is utilised by scientists an policy makers around the world. </span>
Answers:
1A) Al203
1B) SF6
2) Fe203 - iron oxide
C. Quarts watches is the correct answer
Answer:
The acceleration of the centre of mass of spool A is equal to the magnitude of the acceleration of the centre of mass of spool B.
Explanation:
From the image attached, the description from the complete question shows that the two spools are of equal masses (same weight due to same acceleration due to gravity), have the same inextensible wire with negligible mass is attached to both of them over a frictionless pulley; meaning that the tension in the wire is the same on both ends.
And for the acceleration of both spools, we mention the net force.
The net force acting on a body accelerates the body in the same direction as that in which the resultant is applied.
For this system, the net force on either spool is exactly the same in magnitude because the net force is a difference between the only two forces acting on the spools; the tension in the wire and their similar respective weights.
With the net force and mass, for each spool equal, from
ΣF = ma, we get that a = ΣF/m
Meaning that the acceleration of the identical spools is equal also.
Hope this Helps!
An interesting problem, and thanks to the precise heading you put for the question.
We will assume zero air resistance.
We further assume that the angle with vertical is t=53.13 degrees, corresponding to sin(t)=0.8, and therefore cos(t)=0.6.
Given:
angle with vertical, t = 53.13 degrees
sin(t)=0.8; cos(t)=0.6;
air-borne time, T = 20 seconds
initial height, y0 = 800 m
Assume g = -9.81 m/s^2
initial velocity, v m/s (to be determined)
Solution:
(i) Determine initial velocity, v.
initial vertical velocity, vy = vsin(t)=0.8v
Using kinematics equation,
S(T)=800+(vy)T+(1/2)aT^2 ....(1)
Where S is height measured from ground.
substitute values in (1): S(20)=800+(0.8v)T+(-9.81)T^2 =>
v=((1/2)9.81(20^2)-800)/(0.8(20))=72.625 m/s for T=20 s
(ii) maximum height attained by the bomb
Differentiate (1) with respect to T, and equate to zero to find maximum
dS/dt=(vy)+aT=0 =>
Tmax=-(vy)/a = -0.8*72.625/(-9.81)= 5.9225 s
Maximum height,
Smax
=S(5.9225)
=800+(0.8*122.625)*(5.9225)+(1/2)(-9.81)(5.9225^2)
= 972.0494 m
(iii) Horizontal distance travelled by the bomb while air-borne
Horizontal velocity = vx = vcos(t) = 0.6v = 43.575 m/s
Horizontal distace travelled, Sx = (vx)T = 43.575*20 = 871.5 m
(iv) Velocity of the bomb when it strikes ground
vertical velocity with respect to time
V(T) =vy+aT...................(2)
Substitute values, vy=58.1 m/s, a=-9.81 m/s^2
V(T) = 58.130 + (-9.81)T =>
V(20)=58.130-(9.81)(20) = -138.1 m/s (vertical velocity at strike)
vx = 43.575 m/s (horizontal at strike)
resultant velocity = sqrt(43.575^2+(-138.1)^2) = 144.812 m/s (magnitude)
in direction theta = atan(43.575,138.1)
= 17.5 degrees with the vertical, downward and forward. (direction)