Answer:
An object has potential energy (stored energy) when it is not in motion. Once a force has been applied or it begins to move the potential energy changes to kinetic energy (energy of motion).
Therefore, true. (Also would u mind giving brainliest, you don't have to hehe)
Answer:
The right solution is "".
Explanation:
As we know,
1 mole electron =
Total energy =
=
For single electron,
The amount of energy will be:
=
=
Charles' law (also known as the law of volumes) is an experimental gas law that describes how gases tend to expand when heated.
Let's eliminate these one by one.
The first pair would not be the same, as X would most likely be in group IA, and Y would be in group VIIA, because of their tendency to gain and lose electrons.
The second pair would also violate the same rule, but X would most likely be in group IIA, and Y would most likely be in group VIA.
The third pair would not be the same, as X is most likely in group VIIA, and since Y has eight valence electrons, it is most likely a noble gas.
The final pair has X with atomic number 15, making it phosphorous. Phosphorous wants to gain 3 electrons to have a full octet of 8 outer "valence" electrons, and Y would also like to gain 3 electrons. This means it is possible that the final pair would be in the same group.
Answer:
0.42%
Explanation:
<em>∵ pH = - log[H⁺].</em>
2.72 = - log[H⁺]
∴ [H⁺] = 1.905 x 10⁻³.
<em>∵ [H⁺] = √Ka.C</em>
∴ [H⁺]² = Ka.C
∴ ka = [H⁺]²/C = (1.905 x 10⁻³)²/(0.45) = 8.068 x 10⁻⁶.
<em>∵ Ka = α²C.</em>
Where, α is the degree of dissociation.
<em>∴ α = √(Ka/C) </em>= √(8.065 x 10⁻⁶/0.45) = <em>4.234 x 10⁻³.</em>
<em>∴ percentage ionization of the acid = α x 100</em> = (4.233 x 10⁻³)(100) = <em>0.4233% ≅ 0.42%.</em>