Ions. Im 99.9% sure haha.
Answer:
when electron emit the radiations it means it jumped to the lower energy level from higher energy level.
Explanation:
When electron jump into lower energy level from high energy level it loses the energy.
The process is called de-excitation.
Excitation:
When the energy is provided to the atom the electrons by absorbing the energy jump to the higher energy levels. This process is called excitation. The amount of energy absorbed by the electron is exactly equal to the energy difference of orbits.
De-excitation:
When the excited electron fall back to the lower energy levels the energy is released in the form of radiations. this energy is exactly equal to the energy difference between the orbits. The characteristics bright colors are due to the these emitted radiations. These emitted radiations can be seen if they are fall in the visible region of spectrum.
Answer:
Th is the symbol for element Thorium.
Mg is magnesium while Mg 2+ is magnesium Ion. Judging from periodic trends, atomic radius is one half the distance between the atoms of two covalently bonded atoms. It decreases as elevtrons are added to valence shells. That means, across the period it increases and down the group it decreases. Making Mg2+ smaller.
Electronegativity is the energy needed to take an electron in the gaseous state. Florine is more electron negative that lithium. It increases across the period and decreases down the group. Except in the Noble group.
Explanation:
Answer:
the standard cell potential value
Explanation:
For every cell, we can calculate its standard electrode potential from the table of standard electrode potentials listed in many textbooks.
However, from Nernst's equation;
Ecell= E°cell - 0.0592/n log Q
Hence the standard cell potential (E°cell) affects the value of the calculated cell potential Ecell from Nernst's equation as stated above.