The options for given question are as follow,
1) Methane molecules show hydrogen bonding.
<span>2) Ammonia molecules show hydrogen bonding. </span>
<span>3) Methane has stronger hydrogen bonding than ammonia. </span>
<span>4) Both the compounds do not show hydrogen bonding. </span>
<span>5) Both the compounds have strong hydrogen bonding.
</span>
Answer:
Correct answer is Option-2 (Ammonia molecules show hydrogen bonding).
Explanation:
Hydrogen bond interactions are formed when a partial positive hydrogen atom attached to most electronegative atom of one molecule interacts with the partial negative most electronegative element of another molecule. So, in Ammonia hydrogen gets partial positive charge as nitrogen is highly electronegative. While the C-H bond in Methane is non-polar and fails to form hydrogen bond interactions.
Americium is a radioactive element .
- It goes through alpha decay during nuclear reactions .
The nuclear reaction.is given by

Here alpha can be written as He too
Answer:
Forming the activated complex requires energy.
Explanation:
<u>Given:</u>
Dimensions of the room= 12 ft * 15 ft * 8.60 ft
<u>To determine:</u>
The amount of HCN that gives the lethal dose in the room with the given dimensions
<u>Explanation:</u>
As per the World Health Organization, the lethal dose of HCN is around 300 ppm
300 ppm = 300 mg of HCN/ kg of inhaled air
Volume of air = volume of room = 12 * 15 *8.6 = 1548 ft³
Now, 1 ft³ = 28316.8 cm³
Therefore, the calculated volume of air corresponds to:
1548 * 28316.8 = 4.383 * 10⁷ cm3
Density of air (at room temperature 25 C) = 0.00118 g/cm3
Thus mass of air corresponding to the calculated volume is
Mass = Density * volume = 0.00118 g/cm3 * 4.383 * 10⁷ cm3
= 5.172*10⁴ g = 51.72 kg
Lethal amount of HCN corresponding to 51.72 kg of air would be.
= 51.72 kg air* 300 mg of HCN/1 kg air = 15516 mg
Ans: Lethal dose of HCN = 15.5 g