1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mrs_skeptik [129]
3 years ago
12

If a chlorine atom gains or loses a valence electron, it becomes a charged particle called a/an ___ A. Flourine B. Chloride atom

C. Ion D. Neutron
Chemistry
2 answers:
Triss [41]3 years ago
8 0

option c is the answer

ROCK ON DUDE

Alona [7]3 years ago
3 0

Answer:

c ion

Explanation:

i took the test

You might be interested in
Is a chemical reaction when put salt into fizzy drinks and why
fomenos
Um to my best knowledge I believe  it is the carbonated water 

7 0
3 years ago
Read 2 more answers
Materials expand when heated. Consider a metal rod of length L0 at temperature T0. If the temperature is changed by an amount ΔT
marysya [2.9K]

Answer:

(a) The length at temperature 180°C is 40.070 cm

(b) The length at temperature 90°C is 64.976 inches

(c) L(T, α) = 60·α·T - 9000·α + 60

Explanation:

(a) The given parameters are

The thermal expansion coefficient, α for steel = 1.24 × 10⁻⁵/°C

The initial length of the steel L₀ = 40 cm

The initial temperature, t₀ = 40°C

The length at temperature 180°C = L

Therefore, from the given relation, for change in length, ΔL, we have;

ΔL = α × L₀ × ΔT

The amount the temperature changed ΔT = 180°C - 40°C = 140°C

Therefore, the change in length, ΔL, is found as follows;

ΔL = α × L₀ × ΔT = 1.24 × 10⁻⁵/°C × 40 × 140°C = 0.07 cm

Therefore, L =  L₀ + ΔL = 40 + 0.07 = 40.07 cm

The length at temperature 180°C = 40.07 cm

(b) Given that the length at T = 120°C is 65 in., we have;

The temperature at which the new length is sought = 90°C

The amount the temperature changed ΔT = 90°C - 120°C = -30°C

ΔL = α × L₀ × ΔT = 1.24 × 10⁻⁵/°C × 65 × -30°C = -0.024375 inches

The length, L at 90°C is therefore, L = L₀ + ΔL = 65 - 0.024375 = 64.976 in.

The length at temperature 90°C = 64.976 inches

(c) L = L₀ + ΔL  = L₀ +  α × L₀ × ΔT = L₀ +  α × L₀ × (T - T₀)

Therefore;

L = 60 +  α × 60 × (T - 150°C)

L = 60 + α × 60 × T - 9000 × α

L(T, α) = 60·α·T - 9000·α + 60

7 0
4 years ago
Fe(NO3)2 not sure how to get the oxidation numbers of all elements
Shtirlitz [24]
You must remember that oxidation number of hydrogen in acids is always +1, oxidation number of oxygen in oxides & acids is always -2... metals has always oxidation number on plus!

group NO3 comes from HNO3...and oxidation number of whole acid group is always on minus and equal to the amount of hydrogen atoms in this acid... so oxidation number of NO3 = -1

we have 2 NO3 groups so 2*(-1) = -2 and that is the reason why oxidation number of Fe in this formula must be +2... because sum of all elements always gives 0!

Now we could count of oxidation number for nitrogen... we write HNO3 and start counting from right to left:
3*(-2) from oxygens + 1 from hydrogen = -5
so nitrogen must have +5 oxidation number... because sum all in formula must be 0.


4 0
3 years ago
**Help!! **<br> How do I do this question
swat32
The answer is D. Okay l hope this helps
5 0
3 years ago
Based upon the following diagram, propose a possible identity for atoms X and Y. Explain your answer in terms of the periodic ta
zhenek [66]

Answer:

Up until now we have been discussing only the elemental forms of atoms which are neutrally charged. This is because the number of electrons (negative in charge) is equal to the number of protons (positive in charge). The overall charge on the atom is zero, because the magnitude of the negative charge is the same as the magnitude of the positive charge. This one-to-one ratio of charges is not, however, the most common state for many elements. Deviations from this ratio result in charged particles called ions.

Throughout nature, things that are high in energy tend to move toward lower energy states. Lower energy configurations are more stable, so things are naturally drawn toward them. For atoms, these lower energy states are represented by the noble gas elements. These elements have electron configurations characterized by full s and p subshells. This makes them stable and unreactive. They are already at a low energy state, so they tend to stay as they are.

The elements in the other groups have subshells that are not full, so they are unstable when compared to the noble gases. This instability drives them toward the lower energy states represented by the noble gases that are nearby in the periodic table. In these lower energy states, the outermost energy level has eight electrons (an “octet”). The tendency of an atom toward a configuration in which it possesses eight valence electrons is referred to as the “Octet Rule.”

There are two ways for an atom that does not have an octet of valence electrons to obtain an octet in its outer shell. One way is the transfer of electrons between two atoms until both atoms have octets. Because some atoms will lose electrons and some atoms will gain electrons, there is no overall change in the number of electrons, but with the transfer of electrons the individual atoms acquire a nonzero electric charge. Those that lose electrons become positively charged, and those that gain electrons become negatively charged. Recall that atoms carrying positive or negative charges are called ions. If an atom has gained one or more electrons, it is negatively charged and is called an anion. If an atom has lost one or more electrons, it is positively charged and is called a cation. Because opposite charges attract (while like charges repel), these oppositely charged ions attract each other, forming ionic bonds. The resulting compounds are called ionic compounds.

The second way for an atom to obtain an octet of electrons is by sharing electrons with another atom. These shared electrons simultaneously occupy the outermost shell of both atoms. The bond made by electron sharing is called a covalent bond. Covalent bonding and covalent compounds will be discussed in Chapter 4 “Covalent Bonding and Simple Molecular Compounds”.

At the end of chapter 2, we learned how to draw the electron dot symbols to represent the valence electrons for each of the elemental families.  This skill will be instrumental in learning about ions and ionic bonding. Looking at Figure 3.1, observe the Noble Gas family of elements. The electron dot symbol for the Nobel Gas family clearly indicates that the valence electron shell is completely full with an octet of electrons.  If you look at the other families, you can see how many electrons they will need to gain or lose to reach the octet state.  Above, we noted that elements are the most stable when they can reach the octet state. However, it should also be noted that housing excessively high negative or positive charge is unfavorable.  Thus, elements will reach the octet state and also maintain the lowest charge possible.   You will note that for the IA, IIA, IIIA and transition metals groups, it is more economical to lose electrons (1-3 electrons) from their valence shells to reach the octet state, rather than to gain 5-7 electrons.  Similarly main group columns VA, VIA, and VIIA tend to gain electrons (1-3) to complete their octet, rather than losing 5-7 electrons. Some atoms, like carbon, are directly in the middle.  These atoms don’t like to gain or lose electrons, but tend to favor the sharing model of chemical bonding. The remaining sections of this chapter will focus on the formation of ions and the resulting ionic compounds.

Explanation:

8 0
3 years ago
Other questions:
  • Which type of chemical model shows the bond angle and bond length between atoms and compounds?
    6·1 answer
  • (a) 12 cm + 0.031 cm + 7969 cm =
    9·2 answers
  • What is the mass of an atom with seven protons, seven neutrons, and seven electrons? Record and bubble in your answer below.
    12·2 answers
  • Which of these would a very short plant most likely use to move water and nutrients through the plant?
    15·2 answers
  • Janice is given a mixture of alcohol and water. The teacher tells her that she can use temperature to separate these compounds.
    13·2 answers
  • What are some examples of van der waals forces?
    5·1 answer
  • Cu is in FCC structure. We know that even at close to melting temperature, vacancies are still sparsely distributed, i.e., it is
    9·1 answer
  • The diagram shows an early model of the atom. It was suggested by JJ Thompon. The atom was thought to be positively charged
    10·2 answers
  • What are the similarities and differences between living on Earth versus living in space?
    13·2 answers
  • 3. How would you expect the density of the gummy bear to change if you soaked it in isopropanol (rubbing alcohol, density
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!