1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nostrana [21]
3 years ago
12

3. The smallest bird is the Cuban bee hummingbird, which has a mass of only

Physics
1 answer:
Firlakuza [10]3 years ago
8 0

Answer:

2.6 m

Explanation:

The work done by the bird is given by

W=Fd

where

F is the force exerted

d is the distance covered

In this problem, we know:

W=8.8\cdot 10^{-4} J is the work

F=3.4\cdot 10^{-4} N is the force

Solving the equation for d, we find the distance covered by the bird:

d=\frac{W}{F}=\frac{8.8\cdot 10^{-4}}{3.4\cdot 10^{-4}}=2.6 m

You might be interested in
why are we all cheating if we payed attention in what they trying to tell us we wouldn't have to cheat but we are not paying att
sweet-ann [11.9K]
I’ve always been failing since middle school. it’s bcs of quarantine that made me unmotivated. rn my grades are F’s D C and A . I should be paying attention but my phone just keeps me distracted lol.
7 0
3 years ago
Read 2 more answers
A nova occurs when
eimsori [14]

C. hydrogen accreted onto a white dwarf from a close companion rapidly fuses to helium, releasing a large amount of energy.

The accreted material, composed mainly of hydrogen, is compacted on the surface of the white dwarf due to the intense gravitational force on that place. As material accumulates, The white dwarf becomes increasingly hot, until it reaches the critical temperature for ignition of nuclear fusion.

5 0
3 years ago
Determine the inductive reactance for a 50 mH inductor that is across a 15 volt, 400 Hz source.
tresset_1 [31]

Answer:

Inductive reactance is 125.7 Ω

Explanation:

It is given that,

Inductance, L=50\ mH=0.05\ H

Voltage source, V = 15 volt

Frequency, f = 400 Hz

The inductive reactance of the circuit is equivalent to the impedance. It opposes the flow of electric current throughout the circuit. It is given by :

X_L=2\pi fL

X_L=2\pi \times 400\ Hz\times 0.05\ H

X_L=125.66\ \Omega

X_L=125.7\ \Omega

So, the inductive reactance is 125.7 Ω. Hence, this is the required solution.

8 0
3 years ago
While driving on a rural road, your right wheels run off the pavement. You should hold the steering wheel firmly and
Vsevolod [243]

Answer:

The answer is C. Steer in a straight line while gently slowing down

Explanation:

The following are advised when your cars go off the pavement while driving;

firstly, Do not panic.

ensure you hold on to your steering wheel tightly.

keep Steering straight ahead.

ensure you Stay on the shoulder.

Ease up on the accelerator and brake gently.

When you  know you can safely do so, turn back on the road at a much lower speed.

3 0
3 years ago
A brick of mass 5 kg is released from rest at a height of 3 m. How fast is it going when it hits the ground? Acceleration due to
sineoko [7]

Taking into account the definition of kinetic, potencial and mechanical energy, when the brick hits the ground, it has a speed of 7,668 m/s.

<h3>Kinetic energy</h3>

Kinetic energy is a form of energy. It is defined as the energy associated with bodies that are in motion and this energy depends on the mass and speed of the body.

Kinetic energy is defined as the amount of work necessary to accelerate a body of a given mass and at rest, until it reaches a given speed. Once this point is reached, the amount of accumulated kinetic energy will remain the same unless there is a change in speed or the body returns to its state of rest by applying a force.

The kinetic energy is represented by the following expression:

Ec= ½ mv²

Where:

  • Ec is the kinetic energy, which is measured in Joules (J).
  • m is the mass measured in kilograms (kg).
  • v is the speed measured in meters over seconds (m/s).

<h3>Potential energy</h3>

On the other hand, potential energy is the energy that measures the ability of a system to perform work based on its position. In other words, this is the energy that a body has at a certain height above the ground.

Gravitational potential energy is the energy associated with the gravitational force. This will depend on the relative height of an object to some reference point, the mass, and the force of gravity.

So for an object with mass m, at height h, the expression applied to the gravitational energy of the object is:

Ep= m×g×h

Where:

  • Ep is the potential energy in joules (J).
  • m is the mass in kilograms (kg).
  • h is the height in meters (m).
  • g is the acceleration of fall in m/s².
<h3>Mechanical energy</h3>

Finally, mechanical energy is that which a body or a system obtains as a result of the speed of its movement or its specific position, and which is capable of producing mechanical work. Then:

Potential energy + kinetic energy = total mechanical energy

<h3>Principle of conservation of mechanical energy </h3>

The principle of conservation of mechanical energy indicates that the mechanical energy of a body remains constant when all the forces acting on it are conservative (a force is conservative when the work it does on a body depends only on the initial and final points and not the path taken to get from one to the other.)

Therefore, if the potential energy decreases, the kinetic energy will increase. In the same way, if the kinetics decreases, the potential energy will increase.

<h3>This case</h3>

A brick of mass 5 kg is released from rest at a height of 3 m. Then, at this height, the brick of mass has no speed, so the kinetic energy has a value of zero because it depends on the speed or moving bodies. But the potential energy is calculated as:

Ep= 5 kg× 9.8 \frac{m}{s^{2} }× 3 m

Solving:

<u><em>Ep= 147 J</em></u>

So, the mechanical energy is calculated as:

Potential energy + kinetic energy = total mechanical energy

147 J +  0 J= total mechanical energy

147 J= total mechanical energy

The principle of conservation of mechanical energy  can be applied in this case. Then, when the brick hits the ground, the mechanical energy is 147 J. In this case, considering that the height is 0 m, the potential energy is zero because this energy depends on the relative height of the object. But the object has speed, so it will have kinetic energy. Then:

Potential energy + kinetic energy = total mechanical energy

0 J +  kinetic energy= 147 J

kinetic energy= 147 J

Considering the definition of kinetic energy:

½  5 kg×v²= 147 J

v=\sqrt{\frac{2x147 J}{5 kg} }

v=7.668 m/s

Finally, when the brick hits the ground, it has a speed of 7,668 m/s.

Learn more about mechanical energy:

brainly.com/question/17809741

brainly.com/question/14567080

brainly.com/question/12784057

brainly.com/question/10188030

brainly.com/question/11962904

#SPJ1

6 0
2 years ago
Other questions:
  • What is the surface temperature of a distant star having a peak wavelength of 475 nm?
    13·1 answer
  • Which of these characteristics did all of the five waves of immigrants have in common A. They all had the same political beliefs
    6·1 answer
  • A 5.00-pf parallel-plate air-filled capacitor with circular plates is to be used in a circuit in which it will be subjected to p
    6·2 answers
  • As the particles in a soup reach the bolling point what happens
    8·1 answer
  • A automotive test driver travels due north in a prototype hybrid vehicle at 30 mi/h
    10·1 answer
  • How is gravitational force of earth is responsible for rainfall and snowfall
    12·1 answer
  • A moving walkway has a speed of .4 m/s to the east. A stationary observer sees a man walking on the walkway with a velocity of 3
    13·1 answer
  • Blank have a definite shape and do not easily take the shape of their container
    11·2 answers
  • How will you separate mixture of metal and nonmetal objects​
    15·1 answer
  • A ball is thrown straight up into the air. Which of the following best describes the energy present at various stages?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!