<u>We are given:</u>
Mass of Neptune = 1.03 * 10²⁶ kg
Distance from the center of Neptune (r) = 2.27 * 10⁷
now, computing the value of the acceleration due to gravity (g)
<u>Finding g:</u>
We know the formula:
g = G(mass of planet) / (r)²
g = [6.67 * 10⁻¹¹ * 1.03*10²⁶] / (2.27*10⁷) [since G is 6.67*10⁻¹¹]
g = (6.87 * 10¹⁵) / (5.15 * 10¹⁴)
which can be rewritten as:
g = (6.87 * 10¹⁵ * 10⁻¹⁴) / 5.15
g = (6.87 * 10¹⁵⁻¹⁴) / 5.15
g = (6.87/5.15) * 10
g = 1.34 * 10
g = 13.4 m/s² <em>(approx)</em>
When you hold a spinning wheel, the wheel and you, chair included, form a system that obeys the principle of "conservation of angular momentum". This means that any changes in angular momentum within the system must accompanied by an equal and opposite change, so the net force is zero.
Answer:
3.0 cm
Explanation:
We can solve this problem by using the mirror equation:

where
f is the focal length of the mirror
p is the distance of the object from the mirror
q is the distance of the image from the mirror
In this problem we have:
f = 1.5 cm is the focal length of the mirror (positive for a concave mirror)
p = 3.0 cm is the distance of the object from the mirror
Therefore, the distance of the image is:

And the positive sign means that the image is real.
(The second part of the exercise is just the description of the image of the first exercise).
The answere is No pain, no gain