Answer:
The strategy we would like you to learn has five major steps: Focus the Problem, Physics Description, Plan a Solution, Execute the Plan, and Evaluate the Solution. Let's take a detailed look at each of these steps and then do an sample problem following the strategy.
Answer:
The radiation pressure of the light is 3.33 x 10⁻⁶ Pa.
Explanation:
Given;
intensity of light, I = 1 kW/m²
The radiation pressure of light is given as;

I kW = 1000 J/s
The energy flux density = 1000 J/m².s
The speed of light = 3 x 10⁸ m/s
Thus, the radiation pressure of the light is calculated as;

Therefore, the radiation pressure of the light is 3.33 x 10⁻⁶ Pa.
Answer:

Explanation:
When the rock is immersed in unknown liquid the forces that act on it are shown as under
1) Tension T by the string
2) Weight W of the rock
3) Force of buoyancy due to displaced liquid B
For equilibrium we have 
=
When the rock is suspended in air for equilibrium we have

When the rock is suspended in water for equilibrium we have
+
=
Using the given values of tension and solving α,β,γ simultaneously for
we get

Solving for density of liquid we get

