94.6 g. You must use 94.6 g of 92.5 % H_2SO_4 to make 250 g of 35.0 % H_2SO_4.
We can use a version of the <em>dilution formula</em>
<em>m</em>_1<em>C</em>_1 = <em>m</em>_2<em>C</em>_2
where
<em>m</em> represents the mass and
<em>C</em> represents the percent concentrations
We can rearrange the formula to get
<em>m</em>_2= <em>m</em>_1 × (<em>C</em>_1/<em>C</em>_2)
<em>m</em>_1 = 250 g; <em>C</em>_1 = 35.0 %
<em>m</em>_2 = ?; _____<em>C</em>_2 = 92.5 %
∴ <em>m</em>_2 = 250 g × (35.0 %/92.5 %) = 94.6 g
Well, i checked my cereal box and it says "net wait g (500)" so it's probably Grams
Answer = (C.) g
First we have to refer
to the reaction between the acid and the base: <span>
H2SO4 + 2 NaHCO3 ---> 2 H2O + 2 CO2 + Na2SO4
From this balanced equation we can see that for every 1 mol
of acid (H2SO4), we need 2 mol of base (NaHCO3) to neutralize it. Given 28 ml
of 5.8 M acid, we need to find out how many mols of acid that is:
<span>28mL * (1L/1000mL) * 5.8 mol/L = 0.1624 mol H2SO4</span></span>
<span>
Since we need 2 mol of base per mol of acid, we need:</span>
<span> 2*0.1624 mol = 0.3248 mol NaHCO3 </span><span>
MolarMass of NaHCO3 is 84.01 g/mol
<span>0.3248 mol*(84.01g/mol) = 27.29 g NaHCO3</span></span>
Answer: 13 grams
Explanation:
The quantity of heat energy (Q) released from a heated substance depends on its Mass (M), specific heat capacity (C) and change in temperature (Φ)
Thus, Q = MCΦ
Since,
Q = 202.8 Joules
Mass of silver = ?
C = 0.240 J/g °C.
Φ = 65°C
Then, Q = MCΦ
202.8J = M x 0.240 J/g °C x 65°C
202.8J = M x 15.6 J/g
M = (202.8J / 15.6 J/g)
M = 13 g
Thus, the mass of silver is 13 grams