To determine whether a compound is polar or nonpolar you have to take into account:
1) formation of dipoles due to the difference in electronegativities of the atoms
2) shape of the molecule to conclude whether there is a net dipole momentum.
You already, likely, know that the electronegativities of H and O are significatively different, being O more electronegative thatn H. So, you can conclude easilty that the electrons are atracted more by O than by H, thus creating two dipoles H→O
Regarding the shape, it may appear that the molecule is symmetrical, which would lead to the cancellation of the two dipoles. But that is not the true. The H2O2 is not symmetrical.
The lewis structure just show this shape
** **
H - O - O - H
** **
which is what may induce to think that the molecule is symmetrical, leading to the misconception that it is nonpolar.
But in a three dimensional arrangement you could see that the hydrogens are placed in non symmetrical positions, which leads to the formation of a net dipole momentum, and thus to a polar molecule.
The fact that H2O2 is a polar compound is the reason why it can be mixed with water and the H2O2 that you buy in the pharmacy is normally a solution in water.
So, the hydrogen peroxide is polar because the hydrogens are not placed symmetrically in the molecule, which result in a net dipole momentum.
The answer is: " 56 g CaCl₂ " .
__________________________________________________________
Explanation:
__________________________________________________________
2.0 M CaCl₂ = 2.0 mol CaCl₂ / L ;
Since: "M" = "Molarity" (measurement of concentration);
= moles of solute per L {"Liter"} of solution.
__________________________________________________________
Note the exact conversion: 1000 mL = 1 L .
Given: 250 mL ;
250 mL = ? L ? ;
250 mL * (1 L / 1000 L) = (250/1000) L = 0.25 L .
___________________________________________________________
(2.0 mol CaCl₂ / L ) * (0.25L) = (2.0) * (0.25) mol = 0.50 mol CaCl₂ ;
We have: 0.50 mol CaCl₂ ; Convert to "g" (grams):
→ 0.50 mol CaCl₂ .
___________________________________________________________
1 mol CaCl₂ = ? g ?
From the Periodic Table of Elements:
1 mol Ca = 40.08 g
1 mol Cl = <span>35.45 g .
</span>
There are 2 atoms of Cl in " CaCl₂ " ;
→ Note the subscript, "2", in the " Cl₂ " ;
__________________________________________________________
So, to calculate the molar mass of "CaCl₂" :
40.08 g + 2(35.45 g) =
40.08 g + 70.90 g = 110.98 g ; round to 4 significant figures;
→ round to 111 g/mol .
__________________________________________________________
So:
→ 0.50 mol CaCl₂ = ? g CaCl₂ ? ;
→ 0.50 mol CaCl₂ * (111 g CaCl₂ / mol CaCl₂) ;
= (0.50) * (111 g) CaCl₂ ;
= 55.5 g CaCl₂ ;
→ round to 2 significant figures;
→ 56 g CaCl₂ .
___________________________________________________________
The answer is: " 56 g CaCl₂ " .
___________________________________________________________
Answer: 2 C2H4 + 6 O2 => 4 CO2 + 4 H2O
Explanation:The coefficient are as follows: 2: 6: 4: 4
Each atom on the reactant and product side are equal.
Reactant Product
C 2x2 = 4 4x1 = 4
H 2x4 = 8 4x2 = 8
O 6x2 = 12 (4x2) + 4 = 12
Please give me brainleist. :)
Answer:
2a. If the temperature is increased, the reaction will shift to the right in an attempt to release some of the heat. As the forward reaction loses heat while the reverse would create more heat.
2b. If the pressure is increased, it would shift to the left to counteract the increase in pressure as the left side will have fewer molecules.
2c. If Cl2 is added the reaction will shift to the left in order to remove the stress of the extra Cl2 and favor the production of more reactant.
2d. If PCl3 is removed, the reaction will shift to the right. When part of the equation is removed the reaction learns to adapt to the loss by trying to make more Pcl3 and counteract the effects of losing the PCl3.
3a. The reaction will shift to the right to produce more heat and counter the negative effects of losing the heat.
3b. It will shift to the left to get rid of the excess HCl being produced and form more reactant from the breakdown of the HCl.
3c. It would shift to the right in order to get rid of the excess form products from it.
3d. If pressure is decreased there will be no effect on the shift of the reaction because there is an even amount of moles of gas on each side.
4a. K=[N2O4(g0] / [NO2(g)]2
4b. (Below)
K=[N2O4(g)] / [NO2(g)]2
0.4 / 0.5(2)
0.4/0.25 = 1.6
Keq= 1.6