The concept of resonance is required for certain molecules because the localized electron model assumes electrons are located between a given pair of atoms in a molecule.
Answer:
The combination of oxygen with other substances to produce new chemical products is called <u>Oxidation</u>.
Explanation:
Oxidation reactions are defined as,
In terms of Inorganic chemistry:
(i) <u>Removal of Electrons: </u>
Example: Mg → Mg²⁺ + 2 e⁻
(ii) <u>Addition of Oxygen:</u>
Example: 2 Mg + O₂ → 2 MgO
In terms of Organic chemistry:
(i) <u>Addition of Electrons: </u>
Example: Cl₂ + 2 e⁻ → 2 Cl⁻
(ii) <u>Addition of Hydrogen:</u>
Example: H₂CCH₂ + H₂ → H₃CCH₃
Answer:
a. pH = 2 b. pH = 3 c. pH = 1 d. Unanswerable
Explanation:
pH = -log[H+] OR pH = -log{H3O+]
and inversely
pOH = -log[OH-]
1. Determine what substance you are working with, (acid/base)
2. Determine whether or not that acid or base is strong or weak.
a. 1.0 x 10^-2M HCl
HCl is a strong acid, therefore it will dissociate completely into H+ and Cl- with all ions going to the H+, therefore, the concentration of HCl and concentration of H+ are going to be equal, meaning we simply take the negative logarithm of the concentration of HCl and that would equal pH
pH = -log[H+]
pH = -log(1.0x10^-2)
pH = 2
b. 1.0 x 10^-3M HNO3
HNO3 like part a, is a strong acid, therefore it would simply require you to take the negative logarithm of the concentration of the compound itself, to find its pH.
pH = -log[H+]
pH = -log(1.0 x 10^-3)
pH = 3
c. 1.0 x 10^-1M HI
Like the previous parts, HI is a strong acid
pH = -log[H+]
pH = -log(0.10)
pH = 1
d. HB isn't an element, nor is it a compound so that would be unanswerable.
Answer: 368 grams of sodium reacted.
Explanation:
The balanced reaction is :

According to stoichiometry :
2 moles of
are formed from = 2 moles of 
Thus 16 moles of
are formed from=
of 
Mass of 
Thus 368 grams of sodium reacted.
Butter won't melt in a fridge because of intermolecular tensions. While the bonds inside of the fat molecules are unbroken, the attractions between the fat molecules are weaker.
What intermolecular forces are present in butter?
The intermolecular forces known as London dispersion forces are the weakest and are most prominent in hydrocarbons. Due to the fact that butter molecules are hydrocarbons, London dispersion forces do exist between them.
How do intermolecular forces affect melting?
More energy is required to stop the attraction between these molecules as the intermolecular forces become more powerful. Because of this, rising intermolecular forces are accompanied with rising melting points.
Which forces are intramolecular and which are intermolecular?
Intramolecular forces are those that hold atoms together within molecules. The forces that hold molecules together are known as intermolecular forces.
Learn more about intermolecular forces: brainly.com/question/9328418
#SPJ4