If a coin is dropped at a relatively low altitude, it's acceleration remains constant. However, if the coin is dropped at a very high altitude, air resistance will have a significant effect. The initial acceleration of the coin will be the greatest. As it falls down, air resistance will counteract the weight of the coin. So, the acceleration will decrease. Although the acceleration decreases, the coin still accelerates, that is why it falls faster. When the air resistance fully counters the weight of the coin, the acceleration will become zero and the coin will fall at a constant speed (terminal velocity). So, the answer should be, The acceleration decreases until it reaches 0. The closest answer is.
a. The acceleration decreases.
Answer:
A friend snorkeling just below the surface of the water along the same shore will detect the sound first.
Explanation:
- The speed of sound in water medium is faster than that through the air.
- Sound propagates through the medium by transferring through the molecules on it. Water has more closely packed molecules due to which the speed is faster.
- In fact, the sound's speed in water is almost four times faster than that in the air.
- So the guy in the water surface gets to hear sound faster than the one in sore.
Is this practically possible? How can a 100kg man fly? Hahaha
Number 4 is c , number 5 is a , number 6 is d and 7 is a
The normal stress follows the formula written below:
σ = F/A
There are two types of stress, axial and tangential. Since we are only given with the dimension of the radius (and not the length), the possible stress is axial. So, the area is,
A = πr² = π(0.75 in)² = 1.767 in²
So,
σ = F/A = 500 lb/1.767 in² = <em>282.94 psi</em>