Answer:
The total momentum of the universe is always the same and is equal to zero. The total momentum of an isolated system never changes. Momentum can be transferred from one body to another.
Momentum quantifies how likely an object is to stay in motion. Momentum can also be explained using the equation, p=mv, where p is equal to momentum, m is equal to mass, and v is equal to velocity.
Explanation:
Mass of the displaced material. In water it would be the mass of the water that the volume of the ball displaces.
We can use the equation for Newton's Law of Gravitation
Fg = (Gm₁m₂)/r²
Where gravitational constant = G = 6.674 x 10⁻¹¹ N · m²/kg²
mass m₁ = 0.145 kg
mass m₂ = 6.8 kg
distance between centers of masses = r = 0.5 m
Substitute these values into...
Fg = (Gm₁m₂)/r²
Fg = ((6.674 x 10⁻¹¹)(0.145)(6.8)) / (0.5)²
Fg = 2.63 x 10⁻¹⁰ N
Therefore, your answer should be <span>2.6 × 10–10</span>
That depends on how far it is from the nearest planet. If it's on the surface of Earth, it weighs (19 kg) x (9.8 m/s^2) = 186.2 newtons.