Answer:
1.19cm^3 of glycerine
Explanation:
Let Vo= 150cm^3 for both aluminum and glycerine, using expansion formula:
Volume of spill glycerine = change in volume of glycerine - change in volume of aluminum
Volume of glycerine = coefficient of volume expansion of glycerine * Vo* change in temperature - coefficient of volume expansion of Aluminum*Vo* change temperature
coefficient of volume expansion of aluminum = coefficient of linear expansion of aluminum*3 = 23*10^-6 * 3 = 0.69*10^-4 oC^-1
Change in temperature = 41-23 = 18oC
Volume of glycerine that spill = (5.1*10^-4) - (0.69*10^-4) (150*18) = 4.41*10^-4*2700 = 1.19cm3
Explanation:
The Coulomb's law states that the magnitude of each of the electric forces between two point-at-rest charges is directly proportional to the product of the magnitude of both charges and inversely proportional to the square of the distance that separates them:

In this case we have an electron (-e) and a proton (e), so:

In this case, the electric force is negative, therefore, the force is repulsive and its magnitude is:

P=IV
V=IR
P=I(IR)
P=I²R
375=5²R
R=375/25
R=15
Explanation:
Everything in Earth's system can be placed into one of four major subsystems: land, water, living things, or air. These four subsystems are called "spheres." Specifically, they are the "lithosphere" (land), "hydrosphere" (water), "biosphere" (living things), and "atmosphere" (air).
Wow ! This is not simple. At first, it looks like there's not enough information, because we don't know the mass of the cars. But I"m pretty sure it turns out that we don't need to know it.
At the top of the first hill, the car's potential energy is
PE = (mass) x (gravity) x (height) .
At the bottom, the car's kinetic energy is
KE = (1/2) (mass) (speed²) .
You said that the car's speed is 70 m/s at the bottom of the hill,
and you also said that 10% of the energy will be lost on the way
down. So now, here comes the big jump. Put a comment under
my answer if you don't see where I got this equation:
KE = 0.9 PE
(1/2) (mass) (70 m/s)² = (0.9) (mass) (gravity) (height)
Divide each side by (mass):
(0.5) (4900 m²/s²) = (0.9) (9.8 m/s²) (height)
(There goes the mass. As long as the whole thing is 90% efficient,
the solution will be the same for any number of cars, loaded with
any number of passengers.)
Divide each side by (0.9):
(0.5/0.9) (4900 m²/s²) = (9.8 m/s²) (height)
Divide each side by (9.8 m/s²):
Height = (5/9)(4900 m²/s²) / (9.8 m/s²)
= (5 x 4900 m²/s²) / (9 x 9.8 m/s²)
= (24,500 / 88.2) (m²/s²) / (m/s²)
= 277-7/9 meters
(about 911 feet)