Answer:
PE=mgh
M= Mass (kg)
G= Gravitational field strength (N/kg)
H= Hight (m)
PE= Gravitational Potential Energy (J)
Explanation:
Gravitational Potential Energy is the energy stored in a object due to its position above the Earth's surface.
Answer:
3.49 seconds
3.75 seconds
-43200 ft/s²
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration

Time the parachutist falls without friction is 3.19 seconds

Speed of the parachutist when he opens the parachute 31.32 m/s. Now, this will be considered as the initial velocity

So, time the parachutist stayed in the air was 3.19+0.3 = 3.49 seconds


Now the initial velocity of the last half height will be the final velocity of the first half height.

Since the height are equal


Time taken to fall the first half is 2.65 seconds
Total time taken to fall is 2.65+1.1 = 3.75 seconds.
When an object is thrown with a velocity upwards then the velocity of the object at the point to where it was thrown becomes equal to the initial velocity.

Magnitude of acceleration is -43200 ft/s²
Answer:
D, using a spring scale to exert a force on the block. Measure the acceleration of the block and the applied force
Explanation:
For this you would use the net force equation acceleration=net force * mass however you will want to isolate mass so it would be acceleration/ net force to get mass. Then process of elimination comes to play.
Answer:
The minimum speed required is 5.7395km/s.
Explanation:
To escape earth, the kinetic energy of the asteroid must be greater or equal to its gravitational potential energy:

or

where
is the mass of the asteroid,
is its distance form earth's center,
is the mass of the earth, and
is the gravitational constant.
Solving for
we get:

putting in numerical values gives


in kilometers this is

Hence, the minimum speed required is 5.7395km/s.