Answer:
By turning the vehicle "ON" position you can check to see if the gauges light works.
When we switch ON or turn a key to ON the engine, we can find all the gauges working or not.
Answer:
0.423m
Explanation:
Conversion to metric unit
d = 4.8 cm = 0.048m
Let water density be 
Let gravitational acceleration g = 9.8 m/s2
Let x (m) be the length that the spring is stretched in equilibrium, x is also the length of the cylinder that is submerged in water since originally at a non-stretching position, the cylinder barely touches the water surface.
Now that the system is in equilibrium, the spring force and buoyancy force must equal to the gravity force of the cylinder. We have the following force equation:

Where
N is the spring force,
is the buoyancy force, which equals to the weight
of the water displaced by the submerged portion of the cylinder, which is the product of water density
, submerged volume
and gravitational constant g. W = mg is the weight of the metal cylinder.

The submerged volume would be the product of cross-section area and the submerged length x

Plug that into our force equation and we have



Are there choices?? i dont see any
<span>gravitational force = 0.1 mg-wt. = 0.1 * 10^-6 * 9.8 N = Gm1m2/r^2
m1 = 40 kg m2 =15 kg and r = 0.2 m
Put in and find G</span>
R = 1.4GΩ.
The relation between the resistance and the resistivity is given by the equation R = ρL/A, where ρ is the resistivity of a given material, L is the length and A is the cross-sectional area of the material.
To calculate the resistance of a wire of L = 2m, ρ = 49x10⁴Ω.m and A = 0.7mm² = 0.7x10⁻³m² we have to use the equation R = ρL/A.
R = [(49x10⁴Ω.m)(2m)/0.7x10⁻³m²
R = 98x10⁴Ω.m²/0.7x10⁻³m²
R = 1.4x10⁹Ω = 1.4GΩ