pH of 0.048 M HClO is 4.35.
<u>Explanation:</u>
HClO is a weak acid and it is dissociated as,
HClO ⇄ H⁺ + ClO⁻
We can write the equilibrium expression as,
Ka = ![$\frac{[H^{+}] [ClO^{-}] }{[HClO]}](https://tex.z-dn.net/?f=%24%5Cfrac%7B%5BH%5E%7B%2B%7D%5D%20%5BClO%5E%7B-%7D%5D%20%20%7D%7B%5BHClO%5D%7D)
Ka = 4.0 × 10⁻⁸ M
4.0 × 10⁻⁸ M = 
Now we can find x by rewriting the equation as,
x² = 4.0 × 10⁻⁸ × 0.048
= 1.92 × 10⁻⁹
Taking sqrt on both sides, we will get,
x = [H⁺] = 4.38 × 10⁻⁵
pH = -log₁₀[H⁺]
= - log₁₀[ 4.38 × 10⁻⁵]
= 4.35
Answer:
4 moles of carbon
6 moles of water
Explanation:
I think as there no data given u have to is the numbers infront of the equation e.g 4CO2 so 4.
hope this helps :)
Answer:
<h2>0.73 g/cm³</h2>
Explanation:
The density of a substance can be found by using the formula

From the question we have

We have the final answer as
<h3>0.73 g/cm³</h3>
Hope this helps you
When water is in liquid form its molecules are free to move around.
Water molecules are packed reasonably close together. However when water freezes its molecules take up a hexagonal lattice (repeating structure) which has space in the middle of it.
This is largely due to hydrogen bonding between water molecules (complicated).
As a result water molecules in ice aren't packed as closely together as they are in liquid water so the density of ice is lower than that of liquid water.
Hope that helps. I doubt you need to know about hydrogen bonding.