<span>Get a periodic table of elements. ...Find your element on the periodic table. ...Locate the element's atomic number. ...Determine the number of electrons. ...Look for the atomic mass of the element. ...<span>Subtract the atomic number from the atomic mass.</span></span>
Diagram of the nuclear composition, electron configuration, chemical data, and valence orbitals of an atom of neodymium-144 (atomic number: 60), an isotope of this element. The nucleus consists of 60 protons (red) and 84 neutrons (orange). 60 electrons (white) successively occupy available electron shells (rings).
Answer:

Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us to calculate the required new volume by using the Charles' law as a directly proportional relationship between temperature and volume:

In such a way, we solve for V2 and plug in V1, T1 and T2 to obtain:

Regards!
Answer:
AM
Explanation:
to go from moles to grams you multiply by the Atomic Mass or Molar Mass (Atomic Mass for an element and Molar Mass for a compound).
The formula is:
Mass = moles * MM