Kinetic energy = 0.5 * m * v²
m mass
v velocity
If the velocity stays the same and the kinetic energy goes down by a factor of 2, the mass must go down by a factor of 2 also.
The answer is letter A. meteorite bombardment.
During the Earth's earliest beginning, it went through a period of catastrophic and intense formation. By 3-8- 4.1 billion years ago, Earth's atmosphere was never the same as today. This is because of its formation during the pre-Cambrian period whereby t<span>he Earth formed under so much heat and pressure that it formed as a
molten planet.
</span>
Earth was bombarded continuously by the remnants
of the dust and debris — like asteroids, meteors and comets — until it formed
into a solid sphere, pulled into orbit around the sun and began to cool down during the Hellish period (4.5 to 3.8 billion years ago).
<span> </span>.To know more of this topic, see attached file.
Answer:
Weight = 8.162 Newton.
Explanation:
Given the following data;
Mass = 2.2 kg
Acceleration due to gravity = 3.71 N/kg
To find the weight of the textbook;
Weight = mass * acceleration due to gravity
Weight = 2.2 * 3.71
Weight = 8.162 N
Therefore, the weight of the science textbook in mars is 8.162 Newton.
The role lightning plays in earth is when the earth is charged with positive protons, the lightning is the electron.
To develop this problem we will start from the definition of entropy as a function of total heat, temperature. This definition is mathematically described as

Here,
Q = Total Heat
T = Temperature
The total change of entropy from a cold object to a hot object is given by the relationship,

From this relationship we can realize that the change in entropy by the second law of thermodynamics will be positive. Therefore the temperature in the hot body will be higher than that of the cold body, this implies that this term will be smaller than the first, and in other words it would imply that the magnitude of the entropy 'of the hot body' will always be less than the entropy 'cold body'
Change in entropy
is smaller than 
Therefore the correct answer is C. Will always have a smaller magnitude than the change in entropy of the cold object