1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Korolek [52]
2 years ago
5

A ball with a mass of 2.00 kg is dropped from a height of 10.0 m. 2kg 10 m How long will it take to hit the ground?​

Physics
1 answer:
GREYUIT [131]2 years ago
5 0
1.4s.....................
You might be interested in
A child on a high dive has a mass of 40 kilograms. If the high dive is 10 meters in the air, what is the potential energy? GPE=m
saw5 [17]

Answer:

Ep = 3924 [J]

Explanation:

To calculate this value we must use the definition of potential energy which tells us that it is the product of mass by the acceleration of gravity by height.

E_{p}=m*g*h\\

where:

Ep = potential energy [J] (units of Joules)

m = mass = 40 [kg]

g = gravity acceleration = 9.81 [m/s²]

h = elevation = 10 [m]

E_{p} =40*9.81*10\\E_{p} = 3924 [J]

7 0
2 years ago
A plane flies 1800 miles in 9 ​hours, with a tailwind all the way. the return trip on the same​ route, now with a​ headwind, tak
Fittoniya [83]

Initially its moving with tail wind so here the speed of wind will support the motion of the plane

so we can say

V_{plane} + v_{wind} = \frac{distance}{time}

V_{plane} + v_{wind} = \frac{1800}{9}

V_{plane} + v_{wind} = 200 mph

now when its moving with head wind we can say that wind is opposite to the motion of the plane

V_{plane} - v_{wind} = \frac{distance}{time}

V_{plane} - v_{wind} = \frac{1800}{12}

V_{plane} - v_{wind} = 150mph

now by using above two equations we can find speed of palne as well as speed of wind

V_{plane} = 175 mph

v_{wind} = 25 mph

5 0
3 years ago
Explain how polarization of a cell increases the cell's internal resistance.<br>(2<br>2.​
Mandarinka [93]

Answer:

Explanation: The chemical action that occurs in the cell while the current is flowing causes hydrogen bubbles to form on the surface of the anode. This action is called POLARIZATION. Some hydrogen bubbles rise to the surface of the electrolyte and escape into the air, some remain on the surface of the anode. If enough bubbles remain around the anode, the bubbles form a barrier that increases internal resistance. When the internal resistance of the cell increases, the output current is decreased and the voltage of the cell also decreases.

   A cell that is heavily polarized has no useful output. There are several methods to prevent polarization or to depolarize the cell.

   One method uses a vent on the cell to permit the hydrogen to escape into the air. A disadvantage of this method is that hydrogen is not available to reform into the electrolyte during recharging. This problem is solved by adding water to the electrolyte, such as in an automobile battery. A second method is to use material that is rich in oxygen, such as manganese dioxide, which supplies free oxygen to combine with the hydrogen and form water.

   A third method is to use a material that will absorb the hydrogen, such as calcium. The calcium releases hydrogen during the charging process. All three methods remove enough hydrogen so that the cell is practically free from polarization.

LOCAL ACTION

   When the external circuit is removed, the current ceases to flow, and, theoretically, all chemical action within the cell stops. However, commercial zinc contains many impurities, such as iron, carbon, lead, and arsenic. These impurities form many small electrical cells within the zinc electrode in which current flows between the zinc and its impurities. Thus, the chemical action continues even though the cell itself is not connected to a load.

   Local action may be prevented by using pure zinc (which is not practical), by coating the zinc with mercury, or by adding a small percentage of mercury to the zinc during the manufacturing process. The treatment of the zinc with mercury is called amalgamating (mixing) the zinc. Since mercury is many times heavier than an equal volume of water, small particles of impurities weighing less than mercury will float to the surface of the mercury. The removal of these impurities from the zinc prevents local action. The mercury is not readily acted upon by the acid. When the cell is delivering current to a load, the mercury continues to act on the impurities in the zinc. This causes the impurities to leave the surface of the zinc electrode and float to the surface of the mercury. This process greatly increases the storage life of the cell.

6 0
3 years ago
Two competing models attempt to explain the motions and changing brightness of the planets: Ptolemy's geocentric model and Coper
AlekseyPX

Answer:

A. Geocentric: This model is Earth Centered . Retrograde motion is explained by epicycles .

B. Heliocentric: This model is Sun centered.  Retrograde motion is explained by the orbital speeds of planets

C. Both geocentric and heliocentric: Epicycles and deferents help explain planetary motion . Planets move in circular orbits and with uniform motion . The brightness of a planet increases when the planet is closest to Earth.

Explanation:

The principle of the Ptolemy's geocentric model was developed on the assumption that the center of the universe is the Earth. On the other hand, the principle of the Copernicus' heliocentric model was based on the assumption that the center of the universe is the sun. However, both models have a common ideology on uniform circular motion and epicycles.

6 0
3 years ago
In three sentences, please describe SIMPLE HARMONIC motion, and give two examples. Thank you! :-)
11Alexandr11 [23.1K]
A system that repeats to and from its mean or rest point. that executes harmonic motion. a few examples I've heard of are since the springtime a mass-spring system,a swing, simple pendulum, one more example is a steel ball rolling in a curved is this what you need or do you need three more sentences dish. to get S.H.M a body just displaced away from the resting position and of course then is released. the human body oscillates due to the reinforce that pulls it back do you need anything else answered on this and I'll answer it
3 0
3 years ago
Other questions:
  • When checking for noncondensables inside a recovery cylinder why should the technician allow the temperature of the cylinder to
    13·1 answer
  • Supports combustion is it a chemical or physical property?
    14·2 answers
  • Which formula can be used to find the show angle of the resultant vector? A)sin∅=Ry/Rx,B)tan∅=Rx/Ry, C)tan∅=Ry/Rx, D)sin∅=Rx/Ry
    10·2 answers
  • Agricultural waste used as fuel is an example of a _____. solar cell hydrogen fuel cell nonrenewable energy resource renewable e
    6·1 answer
  • Dizziness. Our balance is maintained, at least in part, by the endolymph fluid in the inner ear. Spinning displaces this fluid,
    15·1 answer
  • Suppose a 3.5-kg shotgun is held tightly by an arm and shoulder with a combined mass of 12.5 kg. When the gun fires a bullet wit
    7·1 answer
  • Describe the wavelengths of visible light and list two ways in which they are different from the rest of the electromagnetic spe
    8·1 answer
  • What is the kinetic energy of a hammer that starts from rest and decreases its potential energy by 10 kJ?
    8·1 answer
  • A 5.0 g coin is placed 15 cm from the center of a turntable. The coin has static and kinetic coefficients of friction with the t
    5·1 answer
  • When a speeding truck hits a stationary car, the car is deformed and heat is generated. What can you say about the kinetic energ
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!