Answer:
(a) Wavelength is 0.436 m
(b) Length is 0.872 m
(c) 11.518 m/s
Solution:
As per the question:
The eqn of the displacement is given by:
(1)
n = 4
Now,
We know the standard eqn is given by:
(2)
Now, on comparing eqn (1) and (2):
A = 1.22 cm
K = 

where
A = Amplitude
K = Propagation constant
= angular velocity
Now, to calculate the string's wavelength,
(a) 
where
K = propagation vector


(b) The length of the string is given by:


(c) Now, we first find the frequency of the wave:



Now,
Speed of the wave is given by:


Answer:
See explanation
Explanation:
First, in order for you to understand, remember the basic concept of meniscus in graduated cylinder.
<em>"The meniscus is the curve seen at the top of a liquid in response to its container. The meniscus can be either concave or convex, depending on the surface tension of the liquid and its adhesion to the wall of the container".</em>
Now, according to this definition, and for water, the reading of the volume must be donde at the bottom of the curve of the meniscus. This is because the water gives a concave curve.
If you read it and matches the height of water, you are getting two results:
One, get an accurate value or volume, because it's been done at eye level.
The second fact is that when you do the reading this way, The total pressure is made equal to the atmospheric pressure by adjusting the height of the cylinder until the water level is equal.
Answer:
Explanation:
From, the given information: we are not given any value for the mass, the proportionality constant and the distance
Assuming that:
the mass = 5 kg and the proportionality constant = 50 kg
the distance of the mass above the ground x(t) = 1000 m
Let's recall that:

Similarly, The equation of mption:

replacing our assumed values:
where 



So, when the object hits the ground when x(t) = 1000
Then from above derived equation:


By diregarding 

1000 + 0.981 = 0.981 t
1000.981 = 0.981 t
t = 1000.981/0.981
t = 1020.36 sec
Answer:
The x component of the electric field at y=2m is 
Explanation:
For a linear charge, using <u>Gauss Law</u>, we get that the <em>Electric field (radial) has the following form</em>

<em>where λ is the charge for longitud unit given in the problem, r is replaced by the y coordinate, and there are two known more data</em>. So

is the x component of the Electric field at y=2m on the y axis, which is what we wanted to know.
Answer:
w = 0.943 rad / s
Explanation:
For this problem we can use the law of conservation of angular momentum
Starting point. With the mouse in the center
L₀ = I w₀
Where The moment of inertia (I) of a rod that rotates at one end is
I = 1/3 M L²
Final point. When the mouse is at the end of the rod
= I w + m L² w
As the system is formed by the rod and the mouse, the forces during the movement are internal, therefore the angular momentum is conserved
L₀ = L_{f}
I w₀ = (I + m L²) w
w = I / I + m L²) w₀
We substitute the moment of inertia
w = 1/3 M L² / (1/3 M + m) L² w₀
w = 1 / 3M / (M / 3 + m) w₀
We substitute the values
w = 1/3 / (1/3 + 0.02) w₀
w = 0.943 w₀
To finish the calculation the initial angular velocity value is needed, if we assume that this value is w₀ = 1 rad / s
w = 0.943 rad / s