1 pm = 10∧-10 cm
Therefore, 230 pm is equivalent to 2.3 ×10∧-8 cm.
Atom is in the shape of a sphere,
The volume of a sphere is given by 4/3πr³
Thus, volume of the atom = 4/3π( 2.3 ×10∧-8)³
= 4/3 (3.142 ×12.167×10∧-24
= 5.096 ×10∧-23 cm³
but 1m³= 1000000cm³
Therefore, the volume of the atom = 5.096 ×10∧-29 m³
Using accurate measurements, using pure chemicals and performing the reaction under the most ideal conditions is important to get a valuable percent yield.
<h3>How we calculate the percent yield?</h3>
Percent yield of any chemical reaction is define as the ratios of the actual yield to the theoretical yield of the product and multiply by the 100.
To get the high percent yield or actual yield of any reaction, we have to perform the reaction under ideal condition because if we not use the standard condition then we get the low rate of reaction. Reactants should be present in the pure form as impurity make unwanted products and reduce the productivity of main product and accurate amount of reactants also important for the spontaneous reaction.
Hence, options (a), (b) & (c) are correct.
To know more about percent yield, visit the below link:
brainly.com/question/8638404
Answers are:
2. It pushes on all objects that are on Earth’s surface.
3. It can be measured in atmospheres or kilopascals.
Barometric pressure (atmospheric pressure), is the pressure within the atmosphere of Earth
Atmospheric pressure decreases with increasing height, because there are fewer air molecules above a given object.
Barometer is an instrument used in meteorology to measure atmospheric pressure.
Atmospheric pressure (atm) is the force per unit area by the weight of air above that point.
Kilopascal (kPa) is a metric system pressure unit and equals to 1000 force of newton per square meter.
Atmospheric pressure results from molecular collisions of atmospheric gases.
<u>Given:</u>
Mass of pure iron (Fe) = 3.4 g
<u>To determine:</u>
Mass of HBr needed to dissolve the above iron
<u>Explanation:</u>
Reaction between HBr and Fe is
Fe + 2HBr → FeBr₂ + H₂
Based on the reaction stoichiometry-
1 mole of Fe reacts with 2 moles of HBr
# moles of Fe = mass of Fe/atomic mass of Fe = 3.4/56 g.mol⁻¹ = 0.0607 moles
Therefore # moles of HBr = 2*0.0607 = 0.1214 moles
Molar mass of HBr = 81 g/mole
Mass of HBr = 0.1214 moles * 81 g/mole = 9.83 g
Ans: Mass of HBR required is 9.83 g