Answer:
Va = 5000 m / 3600 s = 1.39 m/s
(Va - Vb) 60 = 10
Vb = Va - .167 = 1.22 m/s
(Va - Vb) T = 4200 Π where T is time for A to complete 1 more lap
.17 T = 4200 Π
T = 24700 Π time for A to again catch B
N = 1.39 * 24700 Answer:
Va = 5000 m / 3600 s = 1.39 m/s
(Va - Vb) 60 = 10
Vb = Va - .167 = 1.22 m/s
(Va - Vb) T = 4200 Π where T is time for A to complete 1 more lap
.17 T = 4200 Π
T = 24700 Π time for A to again catch B
N = 1.39 * 24700 Π / (4200 Π) = 8.2 laps
A will make 8 but not 9 rounds before catching B
Answer:
4500 joules
Explanation:
since work(joules) = force(newtons) x distance(meters),
150N x 30M = 4500 Joules
Answer:
E = 1.04*10⁻¹ N/C
Explanation:
Assuming no other forces acting on the proton than the electric field, as this is uniform, we can calculate the acceleration of the proton, with the following kinematic equation:

As the proton is coming at rest after travelling 0.200 m to the right, vf = 0, and x = 0.200 m.
Replacing this values in the equation above, we can solve for a, as follows:

According to Newton´s 2nd Law, and applying the definition of an electric field, we can say the following:
F = mp*a = q*E
For a proton, we have the following values:
mp = 1.67*10⁻²⁷ kg
q = e = 1.6*10⁻¹⁹ C
So, we can solve for E (in magnitude) , as follows:

⇒ E = 1.04*10⁻¹ N/C