Answer:
This can be translated to:
"find the electrical charge of a body that has 1 million of particles".
First, it will depend on the charge of the particles.
If all the particles have 1 electron more than protons, we will have that the charge of each particle is q = -e = -1.6*10^-19 C
Then the total charge of the body will be:
Q = 1,000,000*-1.6*10^-19 C = -1.6*10^-13 C
If we have the inverse case, where we in each particle we have one more proton than the number of electrons, the total charge will be the opposite of the one of before (because the charge of a proton is equal in magnitude but different in sign than the charge of an electron)
Q = 1.6*10^-13 C
But commonly, we will have a spectrum with the particles, where some of them have a positive charge and some of them will have a negative charge, so we will have a probability of charge that is peaked at Q = 0, this means that, in average, the charge of the particles is canceled by the interaction between them.
<h3><u>Answer;</u></h3>
Satellite
Differences in ocean-surface height can be measured by<u> Satellite</u>
<h3><u>Explanation;</u></h3>
- The topography of the ocean or the height of the ocean surface relative to a level of no motion provides the information on tides, and the distribution of heat and mass in the Earths's oceans.
- <em><u>The ocean topography is measured using satellites altimeter. Satellites use radar altimeters that are specially made to measure the height of the ocean surface. The satellites measure the height of the ocean surface with an accuracy of 3 cm relative to the center of the earth.</u></em>
- Satellite altimeter combines precise orbit determination with accurate ranging by a microwave altimeter of ocean distance to the satellite.
Answer:
40
Explanation:
Mechanical advantage = effort arm / load arm
MA = 20 cm / 0.5 cm
MA = 40
Answer:
the spring compressed is 0.1878 m
Explanation:
Given data
mass = 3 kg
spring constant k = 750 N/m
vertical distance h = 0.45
to find out
How far is the spring compressed
solution
we will apply here law of mass of conservation
i.e
gravitational potential energy loss = gain of eastic potential energy of spring
so we say m×g×h = 1/2× k × e²
so e² = 2×m×g×h / k
so
we put all value here
e² = 2×m×g×h / k
e² = 2×3×9.81×0.45 / 750
e² = 0.0353
e = 0.1878 m
so the spring compressed is 0.1878 m
Answer:
Tension.
Explanation:
I just had this question so I hope it sort of helps.