1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
andriy [413]
3 years ago
15

What is the current in the 60.0 resistor

Physics
2 answers:
Talja [164]3 years ago
8 0

Answer:

you must calculate it using the formula I=V/R

Artist 52 [7]3 years ago
7 0

Answer:

Option (c)

Explanation:

According to question,

R= 60 ohm

V=120 V

Current can be calculated as :

I=\frac{V}{R}

Where,

I  is current

V is voltage

R is resistance

I=\frac{120}{60} \\I=2 A

Current is flowing across 60 ohm will be 2.0 A

Therefore, option c is correct

You might be interested in
PLEASE HELP ANSWER FAST As the vibration of molecules decreases, the _____ of the substance decreases. 1.temperature 2.internal
Aleksandr [31]
I think 1 and 3 is absolutely right but im not sure about number 2.
I think the answer is 4 all of the above because as the vibration decrease automatically the kinetic energy decrease and the temperature is decrease because when the vibration of molecules decrease thats mean the substances is slightly become a solid and you can get a solid cube of liquid if you freeze them
8 0
3 years ago
A particle initially located at the origin has an acceleration of vector a = 2.00ĵ m/s2 and an initial velocity of vector v i =
natali 33 [55]

With acceleration

\mathbf a=\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)\,\mathbf j

and initial velocity

\mathbf v(0)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i

the velocity at time <em>t</em> (b) is given by

\mathbf v(t)=\mathbf v(0)+\displaystyle\int_0^t\mathbf a\,\mathrm du

\mathbf v(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\displaystyle\int_0^t\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)\,\mathbf j\,\mathrm du

\mathbf v(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)u\,\mathbf j\bigg|_{u=0}^{u=t}

\mathbf v(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)t\,\mathbf j

We can get the position at time <em>t</em> (a) by integrating the velocity:

\mathbf x(t)=\mathbf x(0)+\displaystyle\int_0^t\mathbf v(u)\,\mathrm du

The particle starts at the origin, so \mathbf x(0)=\mathbf0.

\mathbf x(t)=\displaystyle\int_0^t\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)u\,\mathbf j\,\mathrm du

\mathbf x(t)=\left(\left(8.00\dfrac{\rm m}{\rm s}\right)u\,\mathbf i+\dfrac12\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)u^2\,\mathbf j\right)\bigg|_{u=0}^{u=t}

\mathbf x(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)t\,\mathbf i+\left(1.00\dfrac{\rm m}{\mathrm s^2}\right)t^2\,\mathbf j

Get the coordinates at <em>t</em> = 8.00 s by evaluating \mathbf x(t) at this time:

\mathbf x(8.00\,\mathrm s)=\left(8.00\dfrac{\rm m}{\rm s}\right)(8.00\,\mathrm s)\,\mathbf i+\left(1.00\dfrac{\rm m}{\mathrm s^2}\right)(8.00\,\mathrm s)^2\,\mathbf j

\mathbf x(8.00\,\mathrm s)=(64.0\,\mathrm m)\,\mathbf i+(64.0\,\mathrm m)\,\mathbf j

so the particle is located at (<em>x</em>, <em>y</em>) = (64.0, 64.0).

Get the speed at <em>t</em> = 8.00 s by evaluating \mathbf v(t) at the same time:

\mathbf v(8.00\,\mathrm s)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)(8.00\,\mathrm s)\,\mathbf j

\mathbf v(8.00\,\mathrm s)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(16.0\dfrac{\rm m}{\rm s}\right)\,\mathbf j

This is the <em>velocity</em> at <em>t</em> = 8.00 s. Get the <em>speed</em> by computing the magnitude of this vector:

\|\mathbf v(8.00\,\mathrm s)\|=\sqrt{\left(8.00\dfrac{\rm m}{\rm s}\right)^2+\left(16.0\dfrac{\rm m}{\rm s}\right)^2}=8\sqrt5\dfrac{\rm m}{\rm s}\approx17.9\dfrac{\rm m}{\rm s}

5 0
3 years ago
Blood in a carotid artery carrying blood to the head is moving at 0.15 m/s when it reaches a section where plaque has narrowed t
sp2606 [1]

Answer:

26.9 Pa

Explanation:

We can answer this question by using the continuity equation, which states that the volume flow rate of a fluid in a pipe must be constant; mathematically:

A_1 v_1 = A_2 v_2 (1)

where

A_1 is the cross-sectional area of the 1st section of the pipe

A_2 is the cross-sectional area of the 2nd section of the pipe

v_1 is the velocity of the 1st section of the pipe

v_2 is the velocity of the 2nd section of the pipe

In this problem we have:

v_1=0.15 m/s is the velocity of blood in the 1st section

The diameter of the 2nd section is 74% of that of the 1st section, so

d_2=0.74d_1

The cross-sectional area is proportional to the square of the diameter, so:

A_2=(0.74)^2 A_1=0.548 A_1

And solving eq.(1) for v2, we find the final velocity:

v_2=\frac{A_1 v_1}{A_2}=\frac{A_1 (0.15)}{0.548 A_1}=0.274 m/s

Now we can use Bernoulli's equation to find the pressure drop:

p_1 + \frac{1}{2}\rho v_1^2 = p_2 + \frac{1}{2}\rho v_2^2

where

\rho=1025 kg/m^3 is the blood density

p_1,p_2 are the initial and final pressure

So the pressure drop is:

p_1 - p_2 = \frac{1}{2}\rho (v_2^2-v_1^2)=\frac{1}{2}(1025)(0.274^2-0.15^2)=26.9 Pa

8 0
3 years ago
A 0.290 kg block on a vertical spring with a spring constant of 5.00 ✕ 103 N/m is pushed downward, compressing the spring 0.110
True [87]

Answer:

The height at point of release is 10.20 m

Explanation:

Given:

Spring constant : K= 5 x 10 to the 3rd power n/m

compression x = 0.10 m

Mass of block m= 0.250 kg

Here spring potential energy converted into potential energy,

mgh = 1/2 kx to the 2 power

For finding at what height it rise,

0.250 x 9.8 x h = 1/2 x 5 x 10 to the 3 power x (0.10)to the 2 power) - ( g= 9.8 m/8 to the 2 power

h= 10.20

Therefore, the height at point of release is 10.20 m

4 0
3 years ago
If the air is only holding one-third as much moisture as it can possibly hold
dolphi86 [110]

Answer:

humoidity

Explanation:

6 0
3 years ago
Other questions:
  • 5. (Serway 9th ed., 7-3) In 1990, Walter Arfeuille of Belgium lifted a 281.5-kg object through a distance of 17.1 cm using only
    7·1 answer
  • how your weight would change with time if you were on a space ship traveling away from,earth toward the moon
    15·1 answer
  • What do lines on a contour map indicate
    7·1 answer
  • If the wavelength is doubled what happens to the period​
    6·1 answer
  • define a compound machine in comparison to a simple machine. name a simple machine and a compound machine
    5·1 answer
  • As velocity increases, what happens to momentum?
    13·2 answers
  • a car accelerates from 2 m/s to 28m/s at a constant rate of 3 m/s^2. How far does it travel while accelerating?
    13·1 answer
  • What is the mass of air in a room
    8·1 answer
  • What happens to the force of gravity between two masses if the mass of one of the objects decreases?
    6·2 answers
  • ****PLEASE HELP**** THERE ARE TWO QUESTIONS (ITS EASY)
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!