The season that is starting is winter.
The answer to 21 is (4)
Answer:
177.1 L
Explanation:
The excersise can be solved, by the Ideal Gases Law.
P . V = n . R . T
In first step we need to determine the moles of gas:
We convert T° from, C° to K → 20°C + 273 = 293K
We convert P from mmHg to atm → 760 mmHg = 1atm
1Dm³ = 1L → 190L
We replace: 190 L . 1 atm = n . 0.082 . 293K
(190L.atm) / 0.082 . 293K = 7.91 moles.
We replace equation at STP conditions (1 atm and 273K)
V = (n . R .T) / P
V = (7.91 mol . 0.082 . 273K) / 1atm = 177.1 L
We can also make a rule of three:
At STP conditions 1 mol of gas occupies 22.4L
Then, 7.91 moles will be contained at (7.91 . 22.4) /1 = 177.1L
Churning or mixing food.
The stomach is a muscular sac that lies between theesophagus and thesmall intestine in the upper abdomen. The stomach is not the only part of your digestive system that absorbs food but rather is a part of the digestive system and important for churning food into a consistency that is easier to digest for the rest of your intestines.
There are 8 total hydrogen (H) atoms.
To solve this we assume
that the gas is an ideal gas. Then, we can use the ideal gas equation which is
expressed as PV = nRT. At a constant temperature and number of moles of the gas
the product of PV is equal to some constant. At another set of condition of
temperature, the constant is still the same. Calculations are as follows:
P1V1 =P2V2
<span>P2 = P1V1/V2</span>
<span>
</span>
<span>The correct answer is the first option. Pressure would increase. This can be seen from the equation above where V2 is indirectly proportional to P2.</span>